Soccer line mark segmentation and classification with stochastic watershed transform

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing-Image Communication Pub Date : 2023-10-01 DOI:10.1016/j.image.2023.117014
Daniel Berjón, Carlos Cuevas, Narciso García
{"title":"Soccer line mark segmentation and classification with stochastic watershed transform","authors":"Daniel Berjón,&nbsp;Carlos Cuevas,&nbsp;Narciso García","doi":"10.1016/j.image.2023.117014","DOIUrl":null,"url":null,"abstract":"<div><p>Augmented reality applications are beginning to change the way sports are broadcast, providing richer experiences and valuable insights to fans. The first step of augmented reality systems is camera calibration, possibly based on detecting the line markings of the playing field. Most existing proposals for line detection rely on edge detection and Hough transform, but radial distortion and extraneous edges cause inaccurate or spurious detections of line markings. We propose a novel strategy to automatically and accurately segment and classify line markings. First, line points are segmented thanks to a stochastic watershed transform that is robust to radial distortions, since it makes no assumptions about line straightness, and is unaffected by the presence of players or the ball. The line points are then linked to primitive structures (straight lines and ellipses) thanks to a very efficient procedure that makes no assumptions about the number of primitives that appear in each image. The strategy has been tested on a new and public database composed by 60 annotated images from matches in five stadiums. The results obtained have proven that the proposed strategy is more robust and accurate than existing approaches, achieving successful line mark detection even under challenging conditions.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117014"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523000966","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Augmented reality applications are beginning to change the way sports are broadcast, providing richer experiences and valuable insights to fans. The first step of augmented reality systems is camera calibration, possibly based on detecting the line markings of the playing field. Most existing proposals for line detection rely on edge detection and Hough transform, but radial distortion and extraneous edges cause inaccurate or spurious detections of line markings. We propose a novel strategy to automatically and accurately segment and classify line markings. First, line points are segmented thanks to a stochastic watershed transform that is robust to radial distortions, since it makes no assumptions about line straightness, and is unaffected by the presence of players or the ball. The line points are then linked to primitive structures (straight lines and ellipses) thanks to a very efficient procedure that makes no assumptions about the number of primitives that appear in each image. The strategy has been tested on a new and public database composed by 60 annotated images from matches in five stadiums. The results obtained have proven that the proposed strategy is more robust and accurate than existing approaches, achieving successful line mark detection even under challenging conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机分水岭变换的足球标线分割与分类
增强现实应用程序正在开始改变体育节目的播放方式,为球迷提供更丰富的体验和有价值的见解。增强现实系统的第一步是相机校准,可能是基于检测比赛场地的标线。大多数现有的线检测方案都依赖于边缘检测和霍夫变换,但径向失真和无关边缘会导致对线标记的不准确或虚假检测。我们提出了一种新的策略来自动准确地分割和分类标线。首先,由于随机分水岭变换对径向失真具有鲁棒性,因此线点被分割,因为它不对直线度进行假设,并且不受球员或球的存在的影响。然后,线点被链接到基元结构(直线和椭圆),这要归功于一个非常有效的过程,该过程不对每个图像中出现的基元的数量进行假设。该策略已在一个新的公共数据库中进行了测试,该数据库由五个体育场比赛的60张注释图像组成。所获得的结果证明,所提出的策略比现有方法更稳健、更准确,即使在具有挑战性的条件下也能成功地检测线迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
期刊最新文献
SES-ReNet: Lightweight deep learning model for human detection in hazy weather conditions HOI-V: One-stage human-object interaction detection based on multi-feature fusion in videos Text in the dark: Extremely low-light text image enhancement High efficiency deep image compression via channel-wise scale adaptive latent representation learning Double supervision for scene text detection and recognition based on BMINet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1