Bruno Aragon , Kerry Cawse-Nicholson , Glynn Hulley , Rasmus Houborg , Joshua B. Fisher
{"title":"K-sharp: A segmented regression approach for image sharpening and normalization","authors":"Bruno Aragon , Kerry Cawse-Nicholson , Glynn Hulley , Rasmus Houborg , Joshua B. Fisher","doi":"10.1016/j.srs.2023.100095","DOIUrl":null,"url":null,"abstract":"<div><p>In recent decades, Earth Observation (EO) satellite missions have improved in spatial resolution and revisit times. These missions, traditionally government-funded, utilize state-of-the-art technology and rigorous instrument calibration, with each mission costing millions of dollars. Recently, nano-satellites known as CubeSats are presenting a cost-effective option for EO; their capacity of working as a constellation has brought an unprecedented opportunity for EO in terms of achievable spatial and temporal resolutions, albeit at the cost of decreased accuracy and cross-sensor consistency. As such, CubeSat datasets often require post-calibration approaches before using them for scientific applications. K-sharp is a relatively simple, data-agnostic machine learning approach that combines K-means and partial least squares regression to derive relationships between two sets of images for normalization. This study used Planet's four-band CubeSat imagery to sharpen day-coincident Landsat 8 normalized difference vegetation index, albedo, and the first short-wave infrared (SWIR) band from 30 m to 3 m spatial resolution (it should be noted that the four-band CubeSat product does not include the first SWIR band, and that the calculation of albedo is not directly possible from this product). K-sharp was tested over agricultural, savanna, rainforest, and tundra sites with and without atmospheric correction. Our model reproduced surface conditions with an average r<sup>2</sup> of 0.88 (rMAE = 11.39%) across all study sites and target variables when compared against the original Landsat 8 data. These results showcase the promising potential of K-sharp in generating precise, CubeSat-derived datasets with high radiometric quality, which can be incorporated into agricultural or ecological applications to enhance their decision-making process at fine spatial scales.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"8 ","pages":"Article 100095"},"PeriodicalIF":5.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017223000202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, Earth Observation (EO) satellite missions have improved in spatial resolution and revisit times. These missions, traditionally government-funded, utilize state-of-the-art technology and rigorous instrument calibration, with each mission costing millions of dollars. Recently, nano-satellites known as CubeSats are presenting a cost-effective option for EO; their capacity of working as a constellation has brought an unprecedented opportunity for EO in terms of achievable spatial and temporal resolutions, albeit at the cost of decreased accuracy and cross-sensor consistency. As such, CubeSat datasets often require post-calibration approaches before using them for scientific applications. K-sharp is a relatively simple, data-agnostic machine learning approach that combines K-means and partial least squares regression to derive relationships between two sets of images for normalization. This study used Planet's four-band CubeSat imagery to sharpen day-coincident Landsat 8 normalized difference vegetation index, albedo, and the first short-wave infrared (SWIR) band from 30 m to 3 m spatial resolution (it should be noted that the four-band CubeSat product does not include the first SWIR band, and that the calculation of albedo is not directly possible from this product). K-sharp was tested over agricultural, savanna, rainforest, and tundra sites with and without atmospheric correction. Our model reproduced surface conditions with an average r2 of 0.88 (rMAE = 11.39%) across all study sites and target variables when compared against the original Landsat 8 data. These results showcase the promising potential of K-sharp in generating precise, CubeSat-derived datasets with high radiometric quality, which can be incorporated into agricultural or ecological applications to enhance their decision-making process at fine spatial scales.