Keep your distance: Land division with separation

IF 0.4 4区 计算机科学 Q4 MATHEMATICS Computational Geometry-Theory and Applications Pub Date : 2023-08-01 DOI:10.1016/j.comgeo.2023.102006
Edith Elkind , Erel Segal-Halevi , Warut Suksompong
{"title":"Keep your distance: Land division with separation","authors":"Edith Elkind ,&nbsp;Erel Segal-Halevi ,&nbsp;Warut Suksompong","doi":"10.1016/j.comgeo.2023.102006","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is part of an ongoing endeavor to bring the theory of fair division closer to practice by handling requirements from real-life applications. We focus on two requirements originating from the division of land estates: (1) each agent should receive a plot of a usable geometric shape, and (2) plots of different agents must be physically separated. With these requirements, the classic fairness notion of <em>proportionality</em> is impractical, since it may be impossible to attain any multiplicative approximation of it. In contrast, the <em>ordinal maximin share approximation</em>, introduced by Budish in 2011, provides meaningful fairness guarantees. We prove upper and lower bounds on achievable maximin share guarantees when the usable shapes are squares, fat rectangles, or arbitrary axis-aligned rectangles, and explore the algorithmic and query complexity of finding fair partitions in this setting. Our work makes use of tools and concepts from computational geometry such as independent sets of rectangles and guillotine partitions.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000263","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

This paper is part of an ongoing endeavor to bring the theory of fair division closer to practice by handling requirements from real-life applications. We focus on two requirements originating from the division of land estates: (1) each agent should receive a plot of a usable geometric shape, and (2) plots of different agents must be physically separated. With these requirements, the classic fairness notion of proportionality is impractical, since it may be impossible to attain any multiplicative approximation of it. In contrast, the ordinal maximin share approximation, introduced by Budish in 2011, provides meaningful fairness guarantees. We prove upper and lower bounds on achievable maximin share guarantees when the usable shapes are squares, fat rectangles, or arbitrary axis-aligned rectangles, and explore the algorithmic and query complexity of finding fair partitions in this setting. Our work makes use of tools and concepts from computational geometry such as independent sets of rectangles and guillotine partitions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保持距离:土地分割与分离
本文是一项正在进行的努力的一部分,通过处理现实应用中的需求,使公平分配理论更接近实践。我们关注两项源自土地产业划分的要求:(1)每个代理人应获得一块可用几何形状的地块,以及(2)不同代理人的地块必须物理分离。有了这些要求,比例的经典公平概念是不切实际的,因为它可能不可能实现任何乘法近似。相比之下,Budish在2011年引入的序数最大化份额近似提供了有意义的公平保证。当可用形状是正方形、胖矩形或任意轴对齐矩形时,我们证明了可实现的最大共享保证的上界和下界,并探讨了在这种设置下寻找公平分区的算法和查询复杂性。我们的工作利用了计算几何中的工具和概念,如独立的矩形集和剪切分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
期刊最新文献
Editorial Board Largest unit rectangles inscribed in a convex polygon Packing unequal disks in the Euclidean plane Editorial Board Improved approximation for two-dimensional vector multiple knapsack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1