Ahmed Zaki , Hamad Al-Ajami , Mostafa Rabah , Ahmed Saber , Mohamed El-Ashquer
{"title":"Refinement of the Kuwait geoid using the modified Stokes' kernel and Airy-Heiskanen isostatic reduction for GIS and geomatics applications","authors":"Ahmed Zaki , Hamad Al-Ajami , Mostafa Rabah , Ahmed Saber , Mohamed El-Ashquer","doi":"10.1016/j.ejrs.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Orthometric heights are important for various applications such as GIS, geomatics, engineering, and geoscience. The ellipsoidal heights can be computed by Global Navigation Satellite System (GNSS) as an accurate, rapid, and efficient method for height determination. The accurate geoid is essential to convert the ellipsoidal heights from GNSS to orthometric heights. The research developed a new geoid called “KW-FWGM2022″ specifically for Kuwait. We used a composite global geopotential model from SPW R5 with EGM2008 and the digital elevation model from SRTM1. The Wong and Gore modified with Airy-Heiskanen topographic-isotactic reduction were used to compute the geoid model. To assess the accuracy of the KW-FWGM2022 geoid, GNSS/leveling stations were used and the assessment showed that the model's accuracy was better than 1.8 cm as a standard deviation. This demonstrates that the KW-FWGM2022 geoid model is highly accurate and suitable for use in various GIS and Geomatics applications in Kuwait.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"26 2","pages":"Pages 333-340"},"PeriodicalIF":4.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982323000261","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Orthometric heights are important for various applications such as GIS, geomatics, engineering, and geoscience. The ellipsoidal heights can be computed by Global Navigation Satellite System (GNSS) as an accurate, rapid, and efficient method for height determination. The accurate geoid is essential to convert the ellipsoidal heights from GNSS to orthometric heights. The research developed a new geoid called “KW-FWGM2022″ specifically for Kuwait. We used a composite global geopotential model from SPW R5 with EGM2008 and the digital elevation model from SRTM1. The Wong and Gore modified with Airy-Heiskanen topographic-isotactic reduction were used to compute the geoid model. To assess the accuracy of the KW-FWGM2022 geoid, GNSS/leveling stations were used and the assessment showed that the model's accuracy was better than 1.8 cm as a standard deviation. This demonstrates that the KW-FWGM2022 geoid model is highly accurate and suitable for use in various GIS and Geomatics applications in Kuwait.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.