{"title":"Decomposing monolithic processes in a process algebra with multi-actions","authors":"Maurice Laveaux , Tim A.C. Willemse","doi":"10.1016/j.jlamp.2023.100858","DOIUrl":null,"url":null,"abstract":"<div><p>A monolithic process is a single recursive equation with data parameters, which only uses non-determinism, action prefixing, and recursion. We present a technique that decomposes such a monolithic process into multiple processes where each process defines behaviour for a subset of the parameters of the monolithic process. For this decomposition we can show that a composition of these processes is strongly bisimilar to the monolithic process under a suitable synchronisation context. Minimising the resulting processes before determining their composition can be used to derive a state space that is smaller than the one obtained by a monolithic exploration. We apply the decomposition technique to several specifications to show that this works in practice. Finally, we prove that state invariants can be used to further improve the effectiveness of this decomposition technique.</p></div>","PeriodicalId":48797,"journal":{"name":"Journal of Logical and Algebraic Methods in Programming","volume":"132 ","pages":"Article 100858"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logical and Algebraic Methods in Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352220823000123","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A monolithic process is a single recursive equation with data parameters, which only uses non-determinism, action prefixing, and recursion. We present a technique that decomposes such a monolithic process into multiple processes where each process defines behaviour for a subset of the parameters of the monolithic process. For this decomposition we can show that a composition of these processes is strongly bisimilar to the monolithic process under a suitable synchronisation context. Minimising the resulting processes before determining their composition can be used to derive a state space that is smaller than the one obtained by a monolithic exploration. We apply the decomposition technique to several specifications to show that this works in practice. Finally, we prove that state invariants can be used to further improve the effectiveness of this decomposition technique.
期刊介绍:
The Journal of Logical and Algebraic Methods in Programming is an international journal whose aim is to publish high quality, original research papers, survey and review articles, tutorial expositions, and historical studies in the areas of logical and algebraic methods and techniques for guaranteeing correctness and performability of programs and in general of computing systems. All aspects will be covered, especially theory and foundations, implementation issues, and applications involving novel ideas.