Maria Touraki , Anna Chanou , Vasiliki Mavridou , Vasiliki Tsertseli , Maria Tsiridi , Emmanuel Panteris
{"title":"Administration of probiotics affects Artemia franciscana metanauplii intestinal ultrastructure and offers resistance against a Photobacterium damselae ssp. piscicida induced oxidative stress response","authors":"Maria Touraki , Anna Chanou , Vasiliki Mavridou , Vasiliki Tsertseli , Maria Tsiridi , Emmanuel Panteris","doi":"10.1016/j.fsirep.2023.100113","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of <em>Photobacterium damselae</em> ssp<em>. piscicida</em> (Phdp) on immune responses and intestinal ultrastructure of <em>Artemia franciscana</em> following infection and their amelioration by the probiotic bacteria <em>Bacillus subtilis, Lactobacillus plantarum</em> and <em>Lactococcus lactis</em> were evaluated. Pathogen growth inhibition in coculture with each probiotic and its virulence against <em>Artemia</em> were confirmed with an LC<sub>50</sub> of 10<sup>5</sup> CFU mL<sup>−1</sup>. Phdp administration to <em>Artemia</em> at sublethal levels resulted in depletion of superoxide dismutase, glutathione reductase, glutathione transferase and phenoloxidase activities, extensive lipid peroxidation and reduced survival. Following a combined administration of each probiotic and the pathogen, enzyme activities and survival were significantly higher, while lipid peroxidation was reduced, compared to the infected group with no probiotic treatment (<em>P</em> < 0.05). The transmission electron microscopy study revealed that pathogen infection resulted in disarranged and fragmented microvilli, formation of empty or pathogen containing cytoplasmic vacuoles and damaged mitochondria. In the probiotic-treated and Phdp-infected series, intestinal cells showed normal appearance, except for the presence of pathogen-containing vacuoles and highly ordered but laterally stacked microvilli. The results of the present study indicate that Phdp induces cell death through an oxidative stress response and probiotics enhance <em>Artemia</em> immune responses to protect it against the Phdp induced damage.</p></div>","PeriodicalId":73029,"journal":{"name":"Fish and shellfish immunology reports","volume":"5 ","pages":"Article 100113"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and shellfish immunology reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667011923000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of Photobacterium damselae ssp. piscicida (Phdp) on immune responses and intestinal ultrastructure of Artemia franciscana following infection and their amelioration by the probiotic bacteria Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis were evaluated. Pathogen growth inhibition in coculture with each probiotic and its virulence against Artemia were confirmed with an LC50 of 105 CFU mL−1. Phdp administration to Artemia at sublethal levels resulted in depletion of superoxide dismutase, glutathione reductase, glutathione transferase and phenoloxidase activities, extensive lipid peroxidation and reduced survival. Following a combined administration of each probiotic and the pathogen, enzyme activities and survival were significantly higher, while lipid peroxidation was reduced, compared to the infected group with no probiotic treatment (P < 0.05). The transmission electron microscopy study revealed that pathogen infection resulted in disarranged and fragmented microvilli, formation of empty or pathogen containing cytoplasmic vacuoles and damaged mitochondria. In the probiotic-treated and Phdp-infected series, intestinal cells showed normal appearance, except for the presence of pathogen-containing vacuoles and highly ordered but laterally stacked microvilli. The results of the present study indicate that Phdp induces cell death through an oxidative stress response and probiotics enhance Artemia immune responses to protect it against the Phdp induced damage.