Marco Fioratti Junod , Brian J. Reid , Ian Sims , Anthony J. Miller
{"title":"Below-ground pitfall traps for standardised monitoring of soil mesofauna: Design and comparison to Berlese/Tullgren funnels","authors":"Marco Fioratti Junod , Brian J. Reid , Ian Sims , Anthony J. Miller","doi":"10.1016/j.pedobi.2023.150911","DOIUrl":null,"url":null,"abstract":"<div><p>Sampling of soil mesofauna has been traditionally carried out with Berlese/Tullgren extractions, a century old technique. However, sampling methods involving the extractions of soil are becoming increasingly difficult to implement and standardise due to the lack of commercially available equipment. Moreover, they are poorly suited to repeated sampling in the same locations and underestimate more mobile taxa.</p><p>Below-ground (hypogean) pitfall trapping is a promising new technique that up to now was only attempted with bulky custom-manufactured tools. In the present work we test a cheap and easily deployable setup made using standard pipe fittings.</p><p>The new design was compared across different environments with Berlese/Tullgren extractions in order to ascertain whether they produce similar species lists and detect the same environment-induced changes in communities. The two trap types were found to yield structurally different assemblages, with the new design producing significantly higher abundance and diversity of springtails and larger taxa. Beta-diversity profiles resulted however perfectly comparable, characterising the same pattern of dissimilarities. In addition, a new method is proposed to use the two sampling types in combination to estimate the dispersal of soil organisms.</p><p>Below-ground pitfall traps have the potential to complement Berlese extractions for reliable and standardised monitoring of soil arthropods, thanks to their effectiveness, low cost and ease of operation.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"101 ","pages":"Article 150911"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405623079799","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sampling of soil mesofauna has been traditionally carried out with Berlese/Tullgren extractions, a century old technique. However, sampling methods involving the extractions of soil are becoming increasingly difficult to implement and standardise due to the lack of commercially available equipment. Moreover, they are poorly suited to repeated sampling in the same locations and underestimate more mobile taxa.
Below-ground (hypogean) pitfall trapping is a promising new technique that up to now was only attempted with bulky custom-manufactured tools. In the present work we test a cheap and easily deployable setup made using standard pipe fittings.
The new design was compared across different environments with Berlese/Tullgren extractions in order to ascertain whether they produce similar species lists and detect the same environment-induced changes in communities. The two trap types were found to yield structurally different assemblages, with the new design producing significantly higher abundance and diversity of springtails and larger taxa. Beta-diversity profiles resulted however perfectly comparable, characterising the same pattern of dissimilarities. In addition, a new method is proposed to use the two sampling types in combination to estimate the dispersal of soil organisms.
Below-ground pitfall traps have the potential to complement Berlese extractions for reliable and standardised monitoring of soil arthropods, thanks to their effectiveness, low cost and ease of operation.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.