Online convex optimization with switching cost and delayed gradients

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Performance Evaluation Pub Date : 2023-10-13 DOI:10.1016/j.peva.2023.102371
Spandan Senapati , Rahul Vaze
{"title":"Online convex optimization with switching cost and delayed gradients","authors":"Spandan Senapati ,&nbsp;Rahul Vaze","doi":"10.1016/j.peva.2023.102371","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the <span><em>online </em><em>convex optimization</em><em> (OCO)</em></span> problem with <em>quadratic</em> and <em>linear</em> switching cost in the <em>limited information</em><span> setting, where an online algorithm can choose its action using only gradient information about the previous objective function. For </span><span><math><mi>L</mi></math></span>-smooth and <span><math><mi>μ</mi></math></span><span><span>-strongly convex objective functions, we propose an online multiple gradient descent (OMGD) algorithm and show that its </span>competitive ratio for the OCO problem with quadratic switching cost is at most </span><span><math><mrow><mn>4</mn><mrow><mo>(</mo><mi>L</mi><mo>+</mo><mn>5</mn><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mn>16</mn><mrow><mo>(</mo><mi>L</mi><mo>+</mo><mn>5</mn><mo>)</mo></mrow></mrow><mrow><mi>μ</mi></mrow></mfrac></mrow></math></span>. The competitive ratio upper bound for OMGD is also shown to be order-wise tight in terms of <span><math><mrow><mi>L</mi><mo>,</mo><mi>μ</mi></mrow></math></span>. In addition, we show that the competitive ratio of any online algorithm is <span><math><mrow><mo>max</mo><mrow><mo>{</mo><mi>Ω</mi><mrow><mo>(</mo><mi>L</mi><mo>)</mo></mrow><mo>,</mo><mi>Ω</mi><mrow><mo>(</mo><mfrac><mrow><mi>L</mi></mrow><mrow><msqrt><mrow><mi>μ</mi></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> in the limited information setting when the switching cost is quadratic. We also show that the OMGD algorithm achieves the optimal (order-wise) dynamic regret in the limited information setting. For the linear switching cost, the competitive ratio upper bound of the OMGD algorithm is shown to depend on both the path length and the squared path length of the problem instance, in addition to <span><math><mrow><mi>L</mi><mo>,</mo><mi>μ</mi></mrow></math></span>, and is shown to be order-wise, the best competitive ratio any online algorithm can achieve. Consequently, we conclude that the optimal competitive ratio for the quadratic and linear switching costs are fundamentally different in the limited information setting.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"162 ","pages":"Article 102371"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016653162300041X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the online convex optimization (OCO) problem with quadratic and linear switching cost in the limited information setting, where an online algorithm can choose its action using only gradient information about the previous objective function. For L-smooth and μ-strongly convex objective functions, we propose an online multiple gradient descent (OMGD) algorithm and show that its competitive ratio for the OCO problem with quadratic switching cost is at most 4(L+5)+16(L+5)μ. The competitive ratio upper bound for OMGD is also shown to be order-wise tight in terms of L,μ. In addition, we show that the competitive ratio of any online algorithm is max{Ω(L),Ω(Lμ)} in the limited information setting when the switching cost is quadratic. We also show that the OMGD algorithm achieves the optimal (order-wise) dynamic regret in the limited information setting. For the linear switching cost, the competitive ratio upper bound of the OMGD algorithm is shown to depend on both the path length and the squared path length of the problem instance, in addition to L,μ, and is shown to be order-wise, the best competitive ratio any online algorithm can achieve. Consequently, we conclude that the optimal competitive ratio for the quadratic and linear switching costs are fundamentally different in the limited information setting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有切换代价和延迟梯度的在线凸优化
研究了有限信息条件下具有二次线性切换代价的在线凸优化问题,其中在线算法仅利用前一个目标函数的梯度信息来选择其行为。对于L-光滑和μ-强凸目标函数,我们提出了一种在线多重梯度下降(OMGD)算法,并证明其对具有二次切换代价的OCO问题的竞争比最大为4(L+5)+16(L+5)μ。OMGD的竞争比上界也被证明是有序紧的,用L,μ表示。此外,我们还证明了在有限信息设置下,当切换成本为二次时,任何在线算法的竞争比都为max{Ω(L),Ω(Lμ)}。我们还证明了OMGD算法在有限信息设置下实现了最优(顺序)动态遗憾。对于线性切换代价,OMGD算法的竞争比上界除了L、μ外,还取决于问题实例的路径长度和路径长度的平方,并且是有序的,是所有在线算法所能达到的最佳竞争比。因此,我们得出结论,在有限的信息设置下,二次型和线性型切换成本的最优竞争比是根本不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Performance Evaluation
Performance Evaluation 工程技术-计算机:理论方法
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
24 days
期刊介绍: Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions: -Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques -Provide new insights into the performance of computing and communication systems -Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools. More specifically, common application areas of interest include the performance of: -Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management) -System architecture, design and implementation -Cognitive radio -VANETs -Social networks and media -Energy efficient ICT -Energy harvesting -Data centers -Data centric networks -System reliability -System tuning and capacity planning -Wireless and sensor networks -Autonomic and self-organizing systems -Embedded systems -Network science
期刊最新文献
Analysis of a queue-length-dependent vacation queue with bulk service, N-policy, set-up time and cost optimization FedCust: Offloading hyperparameter customization for federated learning Trust your local scaler: A continuous, decentralized approach to autoscaling Enabling scalable and adaptive machine learning training via serverless computing on public cloud Symbolic state-space exploration meets statistical model checking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1