Steven Eker , Narciso Martí-Oliet , José Meseguer , Rubén Rubio , Alberto Verdejo
{"title":"The Maude strategy language","authors":"Steven Eker , Narciso Martí-Oliet , José Meseguer , Rubén Rubio , Alberto Verdejo","doi":"10.1016/j.jlamp.2023.100887","DOIUrl":null,"url":null,"abstract":"<div><p>Rewriting logic is a natural and expressive framework for the specification of concurrent systems and logics. The Maude specification language provides an implementation of this formalism that allows executing, verifying, and analyzing the represented systems. These specifications declare their objects by means of terms and equations, and provide rewriting rules to represent potentially non-deterministic local transformations on the state. Sometimes a controlled application of these rules is required to reduce non-determinism, to capture global, goal-oriented or efficiency concerns, or to select specific executions for their analysis. That is what we call a strategy. In order to express them, respecting the separation of concerns principle, a Maude strategy language was proposed and developed. The first implementation of the strategy language was done in Maude itself using its reflective features. After ample experimentation, some more features have been added and, for greater efficiency, the strategy language has been implemented in C++ as an integral part of the Maude system. This paper describes the Maude strategy language along with its semantics, its implementation decisions, and several application examples from various fields.</p></div>","PeriodicalId":48797,"journal":{"name":"Journal of Logical and Algebraic Methods in Programming","volume":"134 ","pages":"Article 100887"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logical and Algebraic Methods in Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235222082300041X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Rewriting logic is a natural and expressive framework for the specification of concurrent systems and logics. The Maude specification language provides an implementation of this formalism that allows executing, verifying, and analyzing the represented systems. These specifications declare their objects by means of terms and equations, and provide rewriting rules to represent potentially non-deterministic local transformations on the state. Sometimes a controlled application of these rules is required to reduce non-determinism, to capture global, goal-oriented or efficiency concerns, or to select specific executions for their analysis. That is what we call a strategy. In order to express them, respecting the separation of concerns principle, a Maude strategy language was proposed and developed. The first implementation of the strategy language was done in Maude itself using its reflective features. After ample experimentation, some more features have been added and, for greater efficiency, the strategy language has been implemented in C++ as an integral part of the Maude system. This paper describes the Maude strategy language along with its semantics, its implementation decisions, and several application examples from various fields.
期刊介绍:
The Journal of Logical and Algebraic Methods in Programming is an international journal whose aim is to publish high quality, original research papers, survey and review articles, tutorial expositions, and historical studies in the areas of logical and algebraic methods and techniques for guaranteeing correctness and performability of programs and in general of computing systems. All aspects will be covered, especially theory and foundations, implementation issues, and applications involving novel ideas.