Weiwei Deng , Changyu Wang , Haifei Lu , Xiankai Meng , Zhao Wang , Jiming Lv , Kaiyu Luo , Jinzhong Lu
{"title":"Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: A comprehensive review","authors":"Weiwei Deng , Changyu Wang , Haifei Lu , Xiankai Meng , Zhao Wang , Jiming Lv , Kaiyu Luo , Jinzhong Lu","doi":"10.1016/j.ijmachtools.2023.104061","DOIUrl":null,"url":null,"abstract":"<div><p>Grain refinement and arrangement is an effective strategy to enhance tensile and fatigue properties of key metallic components. Laser shock peening (LSP) is one of surface severe plastic deformation methods in extreme conditions, with four distinctive features, namely, high pressure (1 GPa–1 TPa), high energy (more than 1 GW), ultra-fast (no more than nanosecond scale), and ultra-high strain rate (more than 10<sup>6</sup> s<sup>−1</sup>), and generates a deeper compressive residual stress (CRS) field and the formation of a gradient nanostructure in the surface layer to prevent the crack initiation of metallic materials and alloys, which is widely used in aerospace, overload vehicle, ocean engineering, and nuclear power. Despite some investigations of LSP on surface integrity, microstructural evolution, and mechanical properties of metallic materials and alloys, there is a lack of a comprehensive perspective of LSP-induced microstructural evolution, mechanical properties for metallic materials and alloys in the last two decades. Furthermore, the relationship between the mechanical properties of metallic materials and alloys and the LSP processing parameters is presented. In particular, LSP-induced featured microstructure and grain refinement mechanisms in three kinds of crystal structures, for instance, face-centred cubic, body-centred cubic, and hexagonal close-packed metals, are present and summarised for the first time. In addition, some new emerging hybrid LSP technologies and typical industrial applications as important chapters are shown. Finally, the faced challenges and future trends in the next 10–20 years are listed and discussed. Results to date indicate that LSP, as an emerging and novel surface modification technology, has been increasingly used to surface layer of metallic components. These topics discussed could provide some important insights on researchers and engineers in the fields of surface modification and advanced laser manufacturing.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"191 ","pages":"Article 104061"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089069552300069X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 11
Abstract
Grain refinement and arrangement is an effective strategy to enhance tensile and fatigue properties of key metallic components. Laser shock peening (LSP) is one of surface severe plastic deformation methods in extreme conditions, with four distinctive features, namely, high pressure (1 GPa–1 TPa), high energy (more than 1 GW), ultra-fast (no more than nanosecond scale), and ultra-high strain rate (more than 106 s−1), and generates a deeper compressive residual stress (CRS) field and the formation of a gradient nanostructure in the surface layer to prevent the crack initiation of metallic materials and alloys, which is widely used in aerospace, overload vehicle, ocean engineering, and nuclear power. Despite some investigations of LSP on surface integrity, microstructural evolution, and mechanical properties of metallic materials and alloys, there is a lack of a comprehensive perspective of LSP-induced microstructural evolution, mechanical properties for metallic materials and alloys in the last two decades. Furthermore, the relationship between the mechanical properties of metallic materials and alloys and the LSP processing parameters is presented. In particular, LSP-induced featured microstructure and grain refinement mechanisms in three kinds of crystal structures, for instance, face-centred cubic, body-centred cubic, and hexagonal close-packed metals, are present and summarised for the first time. In addition, some new emerging hybrid LSP technologies and typical industrial applications as important chapters are shown. Finally, the faced challenges and future trends in the next 10–20 years are listed and discussed. Results to date indicate that LSP, as an emerging and novel surface modification technology, has been increasingly used to surface layer of metallic components. These topics discussed could provide some important insights on researchers and engineers in the fields of surface modification and advanced laser manufacturing.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).