Global regulation of fungal secondary metabolism in Trichoderma reesei by the transcription factor Ypr1, as revealed by transcriptome analysis

Jie Yang, Jia-Xiang Li, Fei Zhang, Xin-Qing Zhao
{"title":"Global regulation of fungal secondary metabolism in Trichoderma reesei by the transcription factor Ypr1, as revealed by transcriptome analysis","authors":"Jie Yang,&nbsp;Jia-Xiang Li,&nbsp;Fei Zhang,&nbsp;Xin-Qing Zhao","doi":"10.1016/j.engmic.2022.100065","DOIUrl":null,"url":null,"abstract":"<div><p><em>Trichoderma reesei</em> Rut-C-30 is a well-known robust producer of cellulolytic enzymes, which are used to degrade lignocellulosic biomass for the sustainable production of biofuels and biochemicals. However, studies of its secondary metabolism and regulation remain scarce. Ypr1 was previously described as a regulator of the biosynthesis of the yellow pigment sorbicillin (a bioactive agent with great pharmaceutical interest) in <em>T. reesei</em> and several other fungi. However, the manner in which this regulator affects global gene transcription has not been explored. In this study, we report the effect of Ypr1 on the regulation of both the secondary and primary metabolism of <em>T. reesei</em> Rut-C30. A global gene transcription profile was obtained using a comparative transcriptomic analysis of the wild-type strain <em>T. reesei</em> Rut-C-30 and its <em>ypr1</em> deletion mutant. The results of this analysis suggest that, in addition to its role in regulating sorbicillin and the major extracellular (hemi)cellulases, Ypr1 also affects the transcription of genes encoding several other secondary metabolites. Although the primary metabolism of <em>T. reesei</em> ∆<em>ypr1</em> became less active compared with that of <em>T. reesei</em> Rut-C-30, several gene clusters involved in its secondary metabolism were activated, such as the gene clusters for the biosynthesis of specific polyketides and non-ribosomal peptides, together with the “sorbicillinoid–cellulase” super cluster, indicating that specific secondary metabolites and cellulases may be co-regulated in <em>T. reesei</em> Rut-C-30. The results presented in this study may benefit the development of genetic engineering strategies for the production of sorbicillin by <em>T. reesei</em> Rut-C-30, and provide insights for enhancing sorbicillin production in other filamentous fungal producers.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 2","pages":"Article 100065"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370322000558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Trichoderma reesei Rut-C-30 is a well-known robust producer of cellulolytic enzymes, which are used to degrade lignocellulosic biomass for the sustainable production of biofuels and biochemicals. However, studies of its secondary metabolism and regulation remain scarce. Ypr1 was previously described as a regulator of the biosynthesis of the yellow pigment sorbicillin (a bioactive agent with great pharmaceutical interest) in T. reesei and several other fungi. However, the manner in which this regulator affects global gene transcription has not been explored. In this study, we report the effect of Ypr1 on the regulation of both the secondary and primary metabolism of T. reesei Rut-C30. A global gene transcription profile was obtained using a comparative transcriptomic analysis of the wild-type strain T. reesei Rut-C-30 and its ypr1 deletion mutant. The results of this analysis suggest that, in addition to its role in regulating sorbicillin and the major extracellular (hemi)cellulases, Ypr1 also affects the transcription of genes encoding several other secondary metabolites. Although the primary metabolism of T. reeseiypr1 became less active compared with that of T. reesei Rut-C-30, several gene clusters involved in its secondary metabolism were activated, such as the gene clusters for the biosynthesis of specific polyketides and non-ribosomal peptides, together with the “sorbicillinoid–cellulase” super cluster, indicating that specific secondary metabolites and cellulases may be co-regulated in T. reesei Rut-C-30. The results presented in this study may benefit the development of genetic engineering strategies for the production of sorbicillin by T. reesei Rut-C-30, and provide insights for enhancing sorbicillin production in other filamentous fungal producers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录组分析揭示了转录因子Ypr1对里氏木霉真菌次生代谢的全局调控
里氏木霉(Trichoderma reesei)鲁特- c -30是一种众所周知的强大的纤维素水解酶生产商,用于降解木质纤维素生物质,以实现生物燃料和生化产品的可持续生产。然而,对其次生代谢和调控的研究仍然很少。Ypr1先前被描述为T. reesei和其他几种真菌中黄色色素山梨比西林(一种具有重要药用价值的生物活性物质)生物合成的调节因子。然而,这种调节因子影响全局基因转录的方式尚未被探索。在本研究中,我们报道了Ypr1在T. reesei Rut-C30的次级和初级代谢调控中的作用。通过对野生型T. reesei Rut-C-30及其ypr1缺失突变体的比较转录组学分析,获得了全局基因转录谱。分析结果表明,除了调控山梨比西林和主要的细胞外(半)纤维素酶外,Ypr1还影响编码其他几种次生代谢产物的基因的转录。虽然与T. reesei Rut-C-30相比,T. reesei∆ypr1的初级代谢活性降低,但其参与次级代谢的几个基因簇被激活,如特异性多酮类和非核糖体肽的生物合成基因簇,以及“山梨壳聚糖-纤维素酶”超级基因簇,表明T. reesei Rut-C-30可能共同调节特异性次级代谢产物和纤维素酶。本研究结果可为T. reesei Rut-C-30生产山梨比西林的基因工程策略的开发提供参考,并为其他丝状真菌生产山梨比西林提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Exploring interspecific interaction variability in microbiota: A review Proactive monitoring of changes in the microbial community structure in wastewater treatment bioreactors using phospholipid fatty acid analysis Immobilization of Thermomyces lanuginosus lipase on metal-organic frameworks and investigation of their catalytic properties and stability The way to uncovering and utilizing marine microbial resources Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1