Prospects for engineering Ralstonia eutropha and Zymomonas mobilis for the autotrophic production of 2,3-butanediol from CO2 and H2

Hui Wei , Wei Wang , Yat-Chen Chou , Michael E. Himmel , Xiaowen Chen , Yannick J. Bomble , Min Zhang
{"title":"Prospects for engineering Ralstonia eutropha and Zymomonas mobilis for the autotrophic production of 2,3-butanediol from CO2 and H2","authors":"Hui Wei ,&nbsp;Wei Wang ,&nbsp;Yat-Chen Chou ,&nbsp;Michael E. Himmel ,&nbsp;Xiaowen Chen ,&nbsp;Yannick J. Bomble ,&nbsp;Min Zhang","doi":"10.1016/j.engmic.2023.100074","DOIUrl":null,"url":null,"abstract":"<div><p>The decarbonization of the chemical industry and a shift toward circular economies because of high global CO<sub>2</sub> emissions make CO<sub>2</sub> an attractive feedstock for manufacturing chemicals. Moreover, H<sub>2</sub> is a low-cost and carbon-free reductant because technologies such as solar-driven electrolysis and supercritical water (scH<sub>2</sub>O) gasification enable sustainable production of molecular hydrogen (H<sub>2</sub>). We review the recent advances in engineering <em>Ralstonia eutropha</em>, the representative species of “Knallgas” bacteria, for utilizing CO<sub>2</sub> and H<sub>2</sub> to autotrophically produce 2,3-butanediol (2,3-BDO). This assessment is focused on state-of-the-art approaches for splitting H<sub>2</sub> to supply energy in the form of ATP and NADH to power cellular reactions and employing the Calvin-Benson-Bassham cycle for CO<sub>2</sub> fixation. Major challenges and opportunities for application and future perspectives are discussed in the context of developing other promising CO<sub>2</sub> and H<sub>2</sub>-utilizing microorganisms, exemplified by <em>Zymomonas mobilis</em>.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 2","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370323000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The decarbonization of the chemical industry and a shift toward circular economies because of high global CO2 emissions make CO2 an attractive feedstock for manufacturing chemicals. Moreover, H2 is a low-cost and carbon-free reductant because technologies such as solar-driven electrolysis and supercritical water (scH2O) gasification enable sustainable production of molecular hydrogen (H2). We review the recent advances in engineering Ralstonia eutropha, the representative species of “Knallgas” bacteria, for utilizing CO2 and H2 to autotrophically produce 2,3-butanediol (2,3-BDO). This assessment is focused on state-of-the-art approaches for splitting H2 to supply energy in the form of ATP and NADH to power cellular reactions and employing the Calvin-Benson-Bassham cycle for CO2 fixation. Major challenges and opportunities for application and future perspectives are discussed in the context of developing other promising CO2 and H2-utilizing microorganisms, exemplified by Zymomonas mobilis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从CO2和H2自养生产2,3-丁二醇的工程研究进展
由于全球二氧化碳排放量高,化学工业的脱碳和向循环经济的转变使二氧化碳成为制造化学品的有吸引力的原料。此外,氢气是一种低成本、无碳的还原剂,因为太阳能驱动的电解和超临界水(scH2O)气化等技术可以实现分子氢(H2)的可持续生产。本文综述了“Knallgas”细菌的代表种Ralstonia eutropha利用CO2和H2自养生产2,3-丁二醇(2,3- bdo)的工程研究进展。本评估的重点是最先进的氢气分裂方法,以ATP和NADH的形式提供能量,为细胞反应提供动力,并采用卡尔文-本森-巴萨姆循环固定二氧化碳。在开发以活动单胞菌为例的其他有前途的CO2和h2利用微生物的背景下,讨论了应用的主要挑战和机遇以及未来的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Exploring interspecific interaction variability in microbiota: A review Proactive monitoring of changes in the microbial community structure in wastewater treatment bioreactors using phospholipid fatty acid analysis Immobilization of Thermomyces lanuginosus lipase on metal-organic frameworks and investigation of their catalytic properties and stability The way to uncovering and utilizing marine microbial resources Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1