{"title":"A note on Lorentz transformations and simultaneity in classical physics and special relativity","authors":"Angelo Pagano, Emanuele V. Pagano","doi":"10.1140/epjh/e2019-90058-4","DOIUrl":null,"url":null,"abstract":"<p>\nSince early models of wave propagation in both stationary and moving media during the nineteenth century, the Lorentz transformation (<i>LT</i>) has played a key role in describing characteristic wave phenomena, e.g., the Doppler shift effect. In these models <i>LT</i> connects two different events generated by wave propagations, as observed in two reference systems and the synchronism is absolute. In relativistic physics <i>LT</i> implements the relativity principle. As a consequence, it connects two space-time event coordinates that both correspond to the same physical event and <i>“absolute synchronization”</i> is not allowed. The relativistic interpretation started from Einstein’s early criticism of the notion of <i>“simultaneity”</i> and Minkowski’s invariance of the space-time interval. In this paper, the two different roles of <i>LT</i>, i.e., in classical wave propagation theories and in relativistic physics, are discussed. Einstein’s early criticism is also re-examined with respect to <i>LT</i> in view of its significance for the notion of <i>simultaneity</i>. Indeed, that early criticism is found to be defective. Our analysis is also useful for general readers in view of its impact on modern speculations about the existence of a preferred system of reference Σ, where light propagation is isotropic, and related implications.\n</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"44 4-5","pages":"321 - 330"},"PeriodicalIF":0.8000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjh/e2019-90058-4","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/e2019-90058-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Since early models of wave propagation in both stationary and moving media during the nineteenth century, the Lorentz transformation (LT) has played a key role in describing characteristic wave phenomena, e.g., the Doppler shift effect. In these models LT connects two different events generated by wave propagations, as observed in two reference systems and the synchronism is absolute. In relativistic physics LT implements the relativity principle. As a consequence, it connects two space-time event coordinates that both correspond to the same physical event and “absolute synchronization” is not allowed. The relativistic interpretation started from Einstein’s early criticism of the notion of “simultaneity” and Minkowski’s invariance of the space-time interval. In this paper, the two different roles of LT, i.e., in classical wave propagation theories and in relativistic physics, are discussed. Einstein’s early criticism is also re-examined with respect to LT in view of its significance for the notion of simultaneity. Indeed, that early criticism is found to be defective. Our analysis is also useful for general readers in view of its impact on modern speculations about the existence of a preferred system of reference Σ, where light propagation is isotropic, and related implications.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.