{"title":"Joint adjustment image steganography networks","authors":"Le Zhang , Yao Lu , Tong Li , Guangming Lu","doi":"10.1016/j.image.2023.117022","DOIUrl":null,"url":null,"abstract":"<div><p>Image steganography aims to achieve covert communication<span><span> between two partners utilizing stego images generated by hiding </span>secret images<span> within cover images. Existing deep image steganography methods have been rapidly developed in this area. Such methods, however, usually generate the stego images and reveal the secret images using one-process networks, lacking sufficient refinement in these methods. Thus, the security and quality of stego and revealed secret images still have much room for promotion, especially for large-capacity image steganography. This paper proposes Joint Adjustment Image Steganography Networks (JAIS-Nets), containing a series of coarse-to-fine iterative adjustment processes, for image steganography. Our JAIS-Nets first proposes Cross-Process Contrastive Refinement (CPCR) adjustment method, using the cross-process contrastive information from cover-stego and secret-revealed secret image pairs, to iteratively refine the generated stego and revealed secret images, respectively. In addition, our JAIS-Nets further proposes Cross-Process Multi-Scale (CPMS) adjustment method, using the cross-process multi-scale information from different scales cover-stego and secret-revealed secret image pairs, to directly adjust and enhance the intermediate representations of the proposed JAIS-Nets. Integrating the proposed CPCR with CPMS methods, the proposed JAIS-Nets can jointly adjust the quality of the stego and revealed secret images at both the learning process and image scale levels. Extensive experiments demonstrate that our JAIS-Nets can achieve state-of-the-art performances on the security and quality of the stego and revealed secret images on both the regular and large capacity image steganography.</span></span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117022"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523001042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Image steganography aims to achieve covert communication between two partners utilizing stego images generated by hiding secret images within cover images. Existing deep image steganography methods have been rapidly developed in this area. Such methods, however, usually generate the stego images and reveal the secret images using one-process networks, lacking sufficient refinement in these methods. Thus, the security and quality of stego and revealed secret images still have much room for promotion, especially for large-capacity image steganography. This paper proposes Joint Adjustment Image Steganography Networks (JAIS-Nets), containing a series of coarse-to-fine iterative adjustment processes, for image steganography. Our JAIS-Nets first proposes Cross-Process Contrastive Refinement (CPCR) adjustment method, using the cross-process contrastive information from cover-stego and secret-revealed secret image pairs, to iteratively refine the generated stego and revealed secret images, respectively. In addition, our JAIS-Nets further proposes Cross-Process Multi-Scale (CPMS) adjustment method, using the cross-process multi-scale information from different scales cover-stego and secret-revealed secret image pairs, to directly adjust and enhance the intermediate representations of the proposed JAIS-Nets. Integrating the proposed CPCR with CPMS methods, the proposed JAIS-Nets can jointly adjust the quality of the stego and revealed secret images at both the learning process and image scale levels. Extensive experiments demonstrate that our JAIS-Nets can achieve state-of-the-art performances on the security and quality of the stego and revealed secret images on both the regular and large capacity image steganography.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.