Accuracy and consistency of space-based vegetation height maps for forest dynamics in alpine terrain

IF 5.7 Q1 ENVIRONMENTAL SCIENCES Science of Remote Sensing Pub Date : 2023-09-01 DOI:10.1016/j.srs.2023.100099
Yuchang Jiang , Marius Rüetschi , Vivien Sainte Fare Garnot , Mauro Marty , Konrad Schindler , Christian Ginzler , Jan D. Wegner
{"title":"Accuracy and consistency of space-based vegetation height maps for forest dynamics in alpine terrain","authors":"Yuchang Jiang ,&nbsp;Marius Rüetschi ,&nbsp;Vivien Sainte Fare Garnot ,&nbsp;Mauro Marty ,&nbsp;Konrad Schindler ,&nbsp;Christian Ginzler ,&nbsp;Jan D. Wegner","doi":"10.1016/j.srs.2023.100099","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring and understanding forest dynamics is essential for environmental conservation and management. This is why the Swiss National Forest Inventory (NFI) provides countrywide vegetation height maps at a spatial resolution of 0.5 <em>m</em>. Its long update time of 6 years, however, limits the temporal analysis of forest dynamics. This can be improved by using spaceborne remote sensing and deep learning to generate large-scale vegetation height maps in a cost-effective way. In this paper, we present an in-depth analysis of these methods for operational application in Switzerland. We generate annual, countrywide vegetation height maps at a 10-m ground sampling distance for the years 2017–2020 based on Sentinel-2 satellite imagery. In comparison to previous works, we conduct a large-scale and detailed stratified analysis against a precise Airborne Laser Scanning reference dataset. This stratified analysis reveals a close relationship between the model accuracy and the topology, especially slope and aspect. We assess the potential of deep learning-derived height maps for change detection and find that these maps can indicate changes as small as 250 <em>m</em><sup>2</sup>. Larger-scale changes caused by a winter storm are detected with an F1-score of 0.77. Our results demonstrate that vegetation height maps computed from satellite imagery with deep learning are a valuable, complementary, cost-effective source of evidence to increase the temporal resolution for national forest assessments.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"8 ","pages":"Article 100099"},"PeriodicalIF":5.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266601722300024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring and understanding forest dynamics is essential for environmental conservation and management. This is why the Swiss National Forest Inventory (NFI) provides countrywide vegetation height maps at a spatial resolution of 0.5 m. Its long update time of 6 years, however, limits the temporal analysis of forest dynamics. This can be improved by using spaceborne remote sensing and deep learning to generate large-scale vegetation height maps in a cost-effective way. In this paper, we present an in-depth analysis of these methods for operational application in Switzerland. We generate annual, countrywide vegetation height maps at a 10-m ground sampling distance for the years 2017–2020 based on Sentinel-2 satellite imagery. In comparison to previous works, we conduct a large-scale and detailed stratified analysis against a precise Airborne Laser Scanning reference dataset. This stratified analysis reveals a close relationship between the model accuracy and the topology, especially slope and aspect. We assess the potential of deep learning-derived height maps for change detection and find that these maps can indicate changes as small as 250 m2. Larger-scale changes caused by a winter storm are detected with an F1-score of 0.77. Our results demonstrate that vegetation height maps computed from satellite imagery with deep learning are a valuable, complementary, cost-effective source of evidence to increase the temporal resolution for national forest assessments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高寒地区森林动态的天基植被高度图的准确性和一致性
监测和了解森林动态对环境保护和管理至关重要。这就是为什么瑞士国家森林调查(NFI)以0.5米的空间分辨率提供全国植被高度图的原因。然而,其更新时间长达6年,限制了森林动态的时间分析。这可以通过利用星载遥感和深度学习以经济有效的方式生成大规模植被高度图来改善。在本文中,我们对这些方法在瑞士的业务应用进行了深入分析。我们基于Sentinel-2卫星图像生成2017-2020年10米地面采样距离的年度全国植被高度图。与以前的工作相比,我们针对精确的机载激光扫描参考数据集进行了大规模和详细的分层分析。这种分层分析揭示了模型精度与拓扑结构,特别是坡度和坡向之间的密切关系。我们评估了深度学习衍生的高度图用于变化检测的潜力,并发现这些图可以指示小至250 m2的变化。探测到冬季风暴引起的较大尺度变化,f1得分为0.77。我们的研究结果表明,通过深度学习从卫星图像中计算出的植被高度图是一种有价值的、互补的、具有成本效益的证据来源,可以提高国家森林评估的时间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
期刊最新文献
Coastal vertical land motion across Southeast Asia derived from combining tide gauge and satellite altimetry observations Identifying thermokarst lakes using deep learning and high-resolution satellite images A two-stage deep learning architecture for detection global coastal and offshore submesoscale ocean eddy using SDGSAT-1 multispectral imagery A comprehensive evaluation of satellite-based and reanalysis soil moisture products over the upper Blue Nile Basin, Ethiopia A comprehensive review of rice mapping from satellite data: Algorithms, product characteristics and consistency assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1