{"title":"Fast-tool-servo-controlled shear-thickening micropolishing","authors":"Zi-Hui Zhu , Peng Huang , Suet To , Li-Min Zhu , Zhiwei Zhu","doi":"10.1016/j.ijmachtools.2022.103968","DOIUrl":null,"url":null,"abstract":"<div><p>Polishing-based post-processing is essential for removing the undesired surface diffraction on diamond-turned microstructured surfaces that is enhanced by periodic tool marks. To overcome challenges in existing micropolishing methods, a fast-tool-servo-controlled shear-thickening micropolishing method was proposed for the non-contact and controllable polishing of microstructured surfaces. The operating kinematics and material removal mechanism are modeled analytically and investigated experimentally. The comprehensive principal stress in front of the rake face of the tool is found to mainly contribute to the material removal. The fast tool servo can tune the principal stress and the viscosity of the slurry by flexibly adjusting the gap width between the surface and the tool edge. Thus, the material removal can be controlled at any operating position. Meanwhile, although the material removal rate is nonlinearly related to the rotation radius and gap width, the constraint between these two factors is linear for achieving a fixed material removal rate. Finally, the feasibility of the proposed micropolishing method is demonstrated by successfully polishing rotationally symmetric and asymmetric microstructured surfaces to achieve improved surface smoothness and conformal surface shapes.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"184 ","pages":"Article 103968"},"PeriodicalIF":14.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695522001195","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 5
Abstract
Polishing-based post-processing is essential for removing the undesired surface diffraction on diamond-turned microstructured surfaces that is enhanced by periodic tool marks. To overcome challenges in existing micropolishing methods, a fast-tool-servo-controlled shear-thickening micropolishing method was proposed for the non-contact and controllable polishing of microstructured surfaces. The operating kinematics and material removal mechanism are modeled analytically and investigated experimentally. The comprehensive principal stress in front of the rake face of the tool is found to mainly contribute to the material removal. The fast tool servo can tune the principal stress and the viscosity of the slurry by flexibly adjusting the gap width between the surface and the tool edge. Thus, the material removal can be controlled at any operating position. Meanwhile, although the material removal rate is nonlinearly related to the rotation radius and gap width, the constraint between these two factors is linear for achieving a fixed material removal rate. Finally, the feasibility of the proposed micropolishing method is demonstrated by successfully polishing rotationally symmetric and asymmetric microstructured surfaces to achieve improved surface smoothness and conformal surface shapes.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).