Thi Thuy Nga Nguyen , Olivier Brun , Balakrishna J. Prabhu
{"title":"A learning-based scheme for channel allocation to vehicular users in wireless networks","authors":"Thi Thuy Nga Nguyen , Olivier Brun , Balakrishna J. Prabhu","doi":"10.1016/j.peva.2023.102331","DOIUrl":null,"url":null,"abstract":"<div><p>Resource allocation algorithms in wireless networks can require solving complex optimization problems at every decision epoch. For large scale networks, when decisions need to be taken on time scales of milliseconds, using standard convex optimization solvers for computing the optimum can be a time-consuming affair that may impair real-time decision making. In this paper, we propose to use Data-driven and Deep Feedforward Neural Networks (DFNN) for learning the relation between the inputs and the outputs of two such resource allocation algorithms that were proposed in Nguyen et al. (2019, 2020). On numerical examples with realistic mobility patterns, we show that the learning algorithm yields an approximate yet satisfactory solution with much less computation time.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"159 ","pages":"Article 102331"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531623000019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Resource allocation algorithms in wireless networks can require solving complex optimization problems at every decision epoch. For large scale networks, when decisions need to be taken on time scales of milliseconds, using standard convex optimization solvers for computing the optimum can be a time-consuming affair that may impair real-time decision making. In this paper, we propose to use Data-driven and Deep Feedforward Neural Networks (DFNN) for learning the relation between the inputs and the outputs of two such resource allocation algorithms that were proposed in Nguyen et al. (2019, 2020). On numerical examples with realistic mobility patterns, we show that the learning algorithm yields an approximate yet satisfactory solution with much less computation time.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science