Vulnerability analysis of urban road networks based on traffic situation

IF 4.1 3区 工程技术 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Critical Infrastructure Protection Pub Date : 2023-07-01 DOI:10.1016/j.ijcip.2023.100590
Ziqi Wang, Yulong Pei, Jing Liu, Hehang Liu
{"title":"Vulnerability analysis of urban road networks based on traffic situation","authors":"Ziqi Wang,&nbsp;Yulong Pei,&nbsp;Jing Liu,&nbsp;Hehang Liu","doi":"10.1016/j.ijcip.2023.100590","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Traffic congestion is a global issue, which occurs during rush hour but also in situations of emergency causing massive congestion. This paper proposes a method for building a weighted road network by using the real-time traffic situation and the inherent characteristics of Urban Road Networks (URNs). To research the </span>cascading failure vulnerability of URNs three kinds of node importance indexes are constructed from the structure, function, and traffic flow characteristics. Then the feasibility and validity of the proposed model are verified by taking Shanghai road networks (SRNs) as an example. The results indicate that the highest </span>betweenness node-based attack causes the most damage to the SRNS of different types of attacks, and the SRNS cascade fails with the greatest speed and scale. Furthermore, we explore that the correlations between network vulnerability indicators, and suggest significant differences at different times during cascading failures of the weighted road network.</p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"41 ","pages":"Article 100590"},"PeriodicalIF":4.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548223000033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

Traffic congestion is a global issue, which occurs during rush hour but also in situations of emergency causing massive congestion. This paper proposes a method for building a weighted road network by using the real-time traffic situation and the inherent characteristics of Urban Road Networks (URNs). To research the cascading failure vulnerability of URNs three kinds of node importance indexes are constructed from the structure, function, and traffic flow characteristics. Then the feasibility and validity of the proposed model are verified by taking Shanghai road networks (SRNs) as an example. The results indicate that the highest betweenness node-based attack causes the most damage to the SRNS of different types of attacks, and the SRNS cascade fails with the greatest speed and scale. Furthermore, we explore that the correlations between network vulnerability indicators, and suggest significant differences at different times during cascading failures of the weighted road network.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于交通状况的城市道路网络脆弱性分析
交通拥堵是一个全球性问题,它发生在高峰时段,但也发生在紧急情况下,导致大规模拥堵。本文提出了一种利用实时交通状况和URNs固有特性建立加权路网的方法。为了研究URNs的级联故障脆弱性,从结构、功能和流量特性三个方面构建了三种节点重要性指标。然后以上海市路网为例,验证了该模型的可行性和有效性。结果表明,在不同类型的攻击中,基于最高介数节点的攻击对SRNS造成的伤害最大,SRNS级联失败的速度和规模最大。此外,我们探索了网络脆弱性指标之间的相关性,并表明在加权道路网络级联故障的不同时间存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Critical Infrastructure Protection
International Journal of Critical Infrastructure Protection COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, MULTIDISCIPLINARY
CiteScore
8.90
自引率
5.60%
发文量
46
审稿时长
>12 weeks
期刊介绍: The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing. The scope of the journal includes, but is not limited to: 1. Analysis of security challenges that are unique or common to the various infrastructure sectors. 2. Identification of core security principles and techniques that can be applied to critical infrastructure protection. 3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures. 4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.
期刊最新文献
FingerCI: Writing industrial process specifications from network traffic Space cybersecurity challenges, mitigation techniques, anticipated readiness, and future directions A tri-level optimization model for interdependent infrastructure network resilience against compound hazard events Digital Twin-assisted anomaly detection for industrial scenarios Impact of Internet and mobile communication on cyber resilience: A multivariate adaptive regression spline modeling approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1