Toward enriched decoding of mandarin spontaneous speech

IF 2.4 3区 计算机科学 Q2 ACOUSTICS Speech Communication Pub Date : 2023-10-01 DOI:10.1016/j.specom.2023.102983
Yu-Chih Deng , Yuan-Fu Liao , Yih-Ru Wang , Sin-Horng Chen
{"title":"Toward enriched decoding of mandarin spontaneous speech","authors":"Yu-Chih Deng ,&nbsp;Yuan-Fu Liao ,&nbsp;Yih-Ru Wang ,&nbsp;Sin-Horng Chen","doi":"10.1016/j.specom.2023.102983","DOIUrl":null,"url":null,"abstract":"<div><p>A deep neural network (DNN)-based automatic speech recognition (ASR) method for enriched decoding of Mandarin spontaneous speech is proposed. It adopts an enhanced approach over the baseline model built with factored time delay neural networks (TDNN-f) and rescored with RNNLM to first building a baseline system composed of a TDNN-f acoustic model (AM), a trigram language model (LM), and a recurrent neural network language model (RNNLM) to generate a word lattice. It then sequentially incorporates a multi-task Part-of-Speech-RNNLM (POS-RNNLM), a hierarchical prosodic model (HPM), and a reduplication-word LM (RLM) into the decoding process by expanding the word lattice and performing rescoring to improve recognition performance and enrich the decoding output with syntactic parameters of POS and punctuation (PM), prosodic tags of word-juncture break types and syllable prosodic states, and an edited recognition text with reduplication words being eliminated. Experimental results on the Mandarin conversational dialogue corpus (MCDC) showed that SER, CER, and WER of 13.2 %, 13.9 %, and 19.1 % were achieved when incorporating the POS-RNNLM and HPM into the baseline system. They represented relative SER, CER, and WER reductions of 7.7 %, 7.9 % and 5.0 % as comparing with those of the baseline system. Futhermore, the use of the RLM resulted in additional 3 %, 4.6 %, and 4.5 % relative SER, CER, and WER reductions through eliminating reduplication words.</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"154 ","pages":"Article 102983"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639323001176","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A deep neural network (DNN)-based automatic speech recognition (ASR) method for enriched decoding of Mandarin spontaneous speech is proposed. It adopts an enhanced approach over the baseline model built with factored time delay neural networks (TDNN-f) and rescored with RNNLM to first building a baseline system composed of a TDNN-f acoustic model (AM), a trigram language model (LM), and a recurrent neural network language model (RNNLM) to generate a word lattice. It then sequentially incorporates a multi-task Part-of-Speech-RNNLM (POS-RNNLM), a hierarchical prosodic model (HPM), and a reduplication-word LM (RLM) into the decoding process by expanding the word lattice and performing rescoring to improve recognition performance and enrich the decoding output with syntactic parameters of POS and punctuation (PM), prosodic tags of word-juncture break types and syllable prosodic states, and an edited recognition text with reduplication words being eliminated. Experimental results on the Mandarin conversational dialogue corpus (MCDC) showed that SER, CER, and WER of 13.2 %, 13.9 %, and 19.1 % were achieved when incorporating the POS-RNNLM and HPM into the baseline system. They represented relative SER, CER, and WER reductions of 7.7 %, 7.9 % and 5.0 % as comparing with those of the baseline system. Futhermore, the use of the RLM resulted in additional 3 %, 4.6 %, and 4.5 % relative SER, CER, and WER reductions through eliminating reduplication words.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
普通话自发语的丰富解码
提出了一种基于深度神经网络的普通话自发语音自动识别方法。它采用了一种优于基线模型的增强方法,该模型由因子时延神经网络(TDNN-f)构建,并用RNNLM重新构建,首先构建由TDNN-f声学模型(AM)、三元语言模型(LM)和递归神经网络语言模型(RNNLM)组成的基线系统,以生成单词格。然后,它通过扩展单词格和执行重新排序,将多任务词性RNNLM(POS-RNNLM)、层次韵律模型(HPM)和重叠单词LM(RLM)顺序地结合到解码过程中,以提高识别性能,并用POS和标点符号(PM)的句法参数丰富解码输出,分词类型和音节韵律状态的韵律标签,以及删除重叠词的编辑识别文本。在普通话会话对话语料库(MCDC)上的实验结果表明,将POS-RNNLM和HPM纳入基线系统时,SER、CER和WER分别达到13.2%、13.9%和19.1%。与基线系统相比,它们的SER、CER和WER相对降低了7.7%、7.9%和5.0%。此外,RLM的使用通过消除重叠词,导致SER、CER和WER的相对减少分别增加了3%、4.6%和4.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
期刊最新文献
A new universal camouflage attack algorithm for intelligent speech system Fixed frequency range empirical wavelet transform based acoustic and entropy features for speech emotion recognition AFP-Conformer: Asymptotic feature pyramid conformer for spoofing speech detection A robust temporal map of speech monitoring from planning to articulation The combined effects of bilingualism and musicianship on listeners’ perception of non-native lexical tones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1