Cara Leigh Widmer , Md Kamruzzaman Sarker , Srikanth Nadella , Joshua Fiechter , Ion Juvina , Brandon Minnery , Pascal Hitzler , Joshua Schwartz , Michael Raymer
{"title":"Towards human-compatible XAI: Explaining data differentials with concept induction over background knowledge","authors":"Cara Leigh Widmer , Md Kamruzzaman Sarker , Srikanth Nadella , Joshua Fiechter , Ion Juvina , Brandon Minnery , Pascal Hitzler , Joshua Schwartz , Michael Raymer","doi":"10.1016/j.websem.2023.100807","DOIUrl":null,"url":null,"abstract":"<div><p>Concept induction, which is based on formal logical reasoning over description logics<span>, has been used in ontology engineering<span><span> in order to create ontology (TBox) axioms from the base data (ABox) graph. In this paper, we show that it can also be used to explain data differentials, for example in the context of Explainable AI (XAI), and we show that it can in fact be done in a way that is meaningful to a human observer. Our approach utilizes a large class hierarchy, curated from the Wikipedia category hierarchy, as background knowledge. To make the explanations easily understandable for non-specialists, the complex description logic explanations generated by our concept </span>induction system (ECII) were presented as a word list consisting of the concept names occurring in the highest rated system responses.</span></span></p></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"79 ","pages":"Article 100807"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826823000367","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Concept induction, which is based on formal logical reasoning over description logics, has been used in ontology engineering in order to create ontology (TBox) axioms from the base data (ABox) graph. In this paper, we show that it can also be used to explain data differentials, for example in the context of Explainable AI (XAI), and we show that it can in fact be done in a way that is meaningful to a human observer. Our approach utilizes a large class hierarchy, curated from the Wikipedia category hierarchy, as background knowledge. To make the explanations easily understandable for non-specialists, the complex description logic explanations generated by our concept induction system (ECII) were presented as a word list consisting of the concept names occurring in the highest rated system responses.
期刊介绍:
The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.