Leveraging Social Media as a Source of Mobility Intelligence: An NLP-Based Approach

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2023-08-24 DOI:10.1109/OJITS.2023.3308210
Tânia Fontes;Francisco Murços;Eduardo Carneiro;Joel Ribeiro;Rosaldo J. F. Rossetti
{"title":"Leveraging Social Media as a Source of Mobility Intelligence: An NLP-Based Approach","authors":"Tânia Fontes;Francisco Murços;Eduardo Carneiro;Joel Ribeiro;Rosaldo J. F. Rossetti","doi":"10.1109/OJITS.2023.3308210","DOIUrl":null,"url":null,"abstract":"This work presents a deep learning framework for analyzing urban mobility by extracting knowledge from messages collected from Twitter. The framework, which is designed to handle large-scale data and adapt automatically to new contexts, comprises three main modules: data collection and system configuration, data analytics, and aggregation and visualization. The text data is pre-processed using NLP techniques to remove informal words, slang, and misspellings. A pre-trained, unsupervised word embedding model, BERT, is used to classify travel-related tweets using a unigram approach with three dictionaries of travel-related target words: small, medium, and big. Public opinion is evaluated using VADER to classify travel-related tweets according to their sentiments. The mobility of three major cities was assessed: London, Melbourne, and New York. The framework demonstrates consistently high average performance, with a Precision of 0.80 for text classification and 0.77 for sentiment analysis. The framework can aggregate sparse information from social media and provide updated information in near real-time with high spatial resolution, enabling easy identification of traffic-related events. The framework is helpful for transportation decision-makers in operational control, tactical-strategic planning, and policy evaluation. For example, it can be used to improve the management of resources during traffic congestion or emergencies.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"4 ","pages":"663-681"},"PeriodicalIF":4.6000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784355/9999144/10229505.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10229505/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

This work presents a deep learning framework for analyzing urban mobility by extracting knowledge from messages collected from Twitter. The framework, which is designed to handle large-scale data and adapt automatically to new contexts, comprises three main modules: data collection and system configuration, data analytics, and aggregation and visualization. The text data is pre-processed using NLP techniques to remove informal words, slang, and misspellings. A pre-trained, unsupervised word embedding model, BERT, is used to classify travel-related tweets using a unigram approach with three dictionaries of travel-related target words: small, medium, and big. Public opinion is evaluated using VADER to classify travel-related tweets according to their sentiments. The mobility of three major cities was assessed: London, Melbourne, and New York. The framework demonstrates consistently high average performance, with a Precision of 0.80 for text classification and 0.77 for sentiment analysis. The framework can aggregate sparse information from social media and provide updated information in near real-time with high spatial resolution, enabling easy identification of traffic-related events. The framework is helpful for transportation decision-makers in operational control, tactical-strategic planning, and policy evaluation. For example, it can be used to improve the management of resources during traffic congestion or emergencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用社交媒体作为移动智能的来源:基于nlp的方法
这项工作提出了一个深度学习框架,通过从Twitter收集的消息中提取知识来分析城市流动性。该框架旨在处理大规模数据并自动适应新环境,包括三个主要模块:数据收集和系统配置、数据分析以及聚合和可视化。文本数据使用NLP技术进行预处理,以删除非正式单词、俚语和拼写错误。一个预训练的、无监督的词嵌入模型,BERT,使用一元图的方法对与旅游相关的推文进行分类,其中有三个与旅游相关的目标词字典:小、中、大。公众舆论评估使用VADER根据他们的情绪对旅游相关的推文进行分类。评估了三个主要城市的流动性:伦敦、墨尔本和纽约。该框架表现出一贯的高平均性能,文本分类的精度为0.80,情感分析的精度为0.77。该框架可以聚合来自社交媒体的稀疏信息,提供近实时、高空间分辨率的更新信息,方便识别交通相关事件。该框架有助于交通决策者进行运营控制、战术战略规划和政策评估。例如,在交通拥堵或突发事件时,可以使用它来改进资源管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Designing Directional Traffic Flow With Edge Mode Combination in 2-D Topological Structures 2024 Index IEEE Open Journal of Intelligent Transportation Systems Vol. 5 Safety-Critical Oracles for Metamorphic Testing of Deep Learning LiDAR Point Cloud Object Detectors Front Cover IEEE Open Journal of Intelligent Transportation Systems Instructions for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1