Improved File-injection Attacks on Searchable Encryption Using Finite Set Theory

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Journal Pub Date : 2020-10-01 DOI:10.1093/comjnl/bxaa161
Gaoli Wang;Zhenfu Cao;Xiaolei Dong
{"title":"Improved File-injection Attacks on Searchable Encryption Using Finite Set Theory","authors":"Gaoli Wang;Zhenfu Cao;Xiaolei Dong","doi":"10.1093/comjnl/bxaa161","DOIUrl":null,"url":null,"abstract":"Searchable encryption (SE) allows the cloud server to search over the encrypted data and leak information as little as possible. Most existing efficient SE schemes assume that the leakage of search pattern and access pattern is acceptable. A series of work was proposed, instructing malicious users to use this leakage to come up with attacks. Especially, with a devastating attack proposed by Zhang et al., the cloud server can reveal the keywords queried by normal users by using some injected files. From the method of constructing uniform \n<tex>$(k,n)$</tex>\n-set of a finite set \n<tex>$A$</tex>\n proposed by Cao, we put forward a new file-injection attack. In our attack, the server needs fewer injected files than the previous attack when the size of \n<tex>$T$</tex>\n is larger than 9 and the size of keyword set is larger than \n<tex>$2T$</tex>\n, where \n<tex>$T$</tex>\n is the threshold of the number of keywords in each injected file. Our attack is more practical and easier to implement in the real scenario.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"64 8","pages":"1264-1276"},"PeriodicalIF":1.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/comjnl/bxaa161","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9579294/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 4

Abstract

Searchable encryption (SE) allows the cloud server to search over the encrypted data and leak information as little as possible. Most existing efficient SE schemes assume that the leakage of search pattern and access pattern is acceptable. A series of work was proposed, instructing malicious users to use this leakage to come up with attacks. Especially, with a devastating attack proposed by Zhang et al., the cloud server can reveal the keywords queried by normal users by using some injected files. From the method of constructing uniform $(k,n)$ -set of a finite set $A$ proposed by Cao, we put forward a new file-injection attack. In our attack, the server needs fewer injected files than the previous attack when the size of $T$ is larger than 9 and the size of keyword set is larger than $2T$ , where $T$ is the threshold of the number of keywords in each injected file. Our attack is more practical and easier to implement in the real scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用有限集理论改进可搜索加密的文件注入攻击
可搜索加密(SE)允许云服务器对加密数据进行搜索,并尽可能少地泄露信息。大多数现有的高效SE方案都假设搜索模式和访问模式的泄漏是可以接受的。提出了一系列工作,指示恶意用户利用这种泄漏来进行攻击。特别是,在张等人提出的毁灭性攻击中,云服务器可以通过使用一些注入的文件来揭示普通用户查询的关键词。根据Cao提出的构造有限集$a$的一致$(k,n)$-集的方法,我们提出了一种新的文件注入攻击。在我们的攻击中,当$T$的大小大于9并且关键字集的大小大于$2T$时,服务器需要的注入文件比以前的攻击更少,其中$T$是每个注入文件中关键字数量的阈值。我们的攻击更实用,在真实场景中更容易实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
期刊最新文献
Correction to: Automatic Diagnosis of Diabetic Retinopathy from Retinal Abnormalities: Improved Jaya-Based Feature Selection and Recurrent Neural Network Eager Term Rewriting For The Fracterm Calculus Of Common Meadows An Intrusion Detection Method Based on Attention Mechanism to Improve CNN-BiLSTM Model Enhancing Auditory Brainstem Response Classification Based On Vision Transformer Leveraging Meta-Learning To Improve Unsupervised Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1