Empirical Assessment of End-to-End Iris Recognition System Capacity

Priyanka Das;Richard Plesh;Veeru Talreja;Natalia A. Schmid;Matthew Valenti;Joseph Skufca;Stephanie Schuckers
{"title":"Empirical Assessment of End-to-End Iris Recognition System Capacity","authors":"Priyanka Das;Richard Plesh;Veeru Talreja;Natalia A. Schmid;Matthew Valenti;Joseph Skufca;Stephanie Schuckers","doi":"10.1109/TBIOM.2023.3256894","DOIUrl":null,"url":null,"abstract":"Iris is an established modality in biometric recognition applications including consumer electronics, e-commerce, border security, forensics, and de-duplication of identity at a national scale. In light of the expanding usage of biometric recognition, identity clash (when templates from two different people match) is an imperative factor of consideration for a system’s deployment. This study explores system capacity estimation by empirically estimating the constrained capacity of an end-to-end iris recognition system (NIR systems with Daugman-based feature extraction) operating at an acceptable error rate, i.e., the number of subjects a system can resolve before encountering an error. We study the impact of six system parameters on an iris recognition system’s constrained capacity- number of enrolled identities, image quality, template dimension, random feature elimination, filter resolution, and system operating point. In our assessment, we analyzed 13.2 million comparisons from 5158 unique identities for each of 24 different system configurations. This work provides a framework to better understand iris recognition system capacity as a function of biometric system configurations beyond the operating point, for large-scale applications.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"5 2","pages":"154-169"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10077721/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Iris is an established modality in biometric recognition applications including consumer electronics, e-commerce, border security, forensics, and de-duplication of identity at a national scale. In light of the expanding usage of biometric recognition, identity clash (when templates from two different people match) is an imperative factor of consideration for a system’s deployment. This study explores system capacity estimation by empirically estimating the constrained capacity of an end-to-end iris recognition system (NIR systems with Daugman-based feature extraction) operating at an acceptable error rate, i.e., the number of subjects a system can resolve before encountering an error. We study the impact of six system parameters on an iris recognition system’s constrained capacity- number of enrolled identities, image quality, template dimension, random feature elimination, filter resolution, and system operating point. In our assessment, we analyzed 13.2 million comparisons from 5158 unique identities for each of 24 different system configurations. This work provides a framework to better understand iris recognition system capacity as a function of biometric system configurations beyond the operating point, for large-scale applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
端到端虹膜识别系统容量的实证评估
虹膜是生物识别应用的一种成熟模式,包括消费电子、电子商务、边境安全、取证和全国范围内的身份去重复。鉴于生物识别的广泛使用,身份冲突(当来自两个不同的人的模板匹配时)是系统部署的一个重要考虑因素。本研究通过经验估计端到端虹膜识别系统(基于道格曼特征提取的NIR系统)在可接受错误率下的约束容量,即系统在遇到错误之前可以解决的受试者数量,来探索系统容量估计。我们研究了六个系统参数对虹膜识别系统受限容量的影响——注册身份的数量、图像质量、模板尺寸、随机特征消除、滤波器分辨率和系统操作点。在我们的评估中,我们分析了来自24种不同系统配置的5158个唯一身份的1320万个比较。这项工作提供了一个框架,以更好地理解虹膜识别系统的能力,作为生物识别系统配置的功能,超越了操作点,用于大规模应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on Biometrics, Behavior, and Identity Science Vol. 6 Table of Contents IEEE T-BIOM Editorial Board Changes IEEE Transactions on Biometrics, Behavior, and Identity Science Cutting-Edge Biometrics Research: Selected Best Papers From IJCB 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1