{"title":"A three-phase symmetrical multistage Voltage multiplier","authors":"S. Iqbal","doi":"10.1109/LPEL.2005.845174","DOIUrl":null,"url":null,"abstract":"A three-phase symmetrical Cockcroft-Walton (CW) multistage voltage multiplier (VM) is proposed. It consists of one smoothing column and six oscillating columns. The oscillating columns are connected to three-phase power through center-tap transformers. The capacitors of the smoothing column are charged six times per cycle by six oscillating columns and are discharged six times through the load, unlike the conventional symmetrical VM in which they are charged and discharged twice per cycle. The three-phase symmetrical structure completely eliminates the first five harmonic components of load-generated voltage ripple. Theoretical analysis indicates that the proposed three-phase symmetrical CW-VM has one-third the voltage ripple and voltage drop of the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the proposed three-phase symmetrical CW-VM as well as of the conventional single-phase symmetrical CW-VM are presented. A comparison shows that the three-phase symmetrical CW-VM has significantly less voltage ripple, half the voltage drop, and a fourfold increase in output power over the conventional single-phase symmetrical CW-VM.","PeriodicalId":100635,"journal":{"name":"IEEE Power Electronics Letters","volume":"3 1","pages":"30-33"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LPEL.2005.845174","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/1411775/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
A three-phase symmetrical Cockcroft-Walton (CW) multistage voltage multiplier (VM) is proposed. It consists of one smoothing column and six oscillating columns. The oscillating columns are connected to three-phase power through center-tap transformers. The capacitors of the smoothing column are charged six times per cycle by six oscillating columns and are discharged six times through the load, unlike the conventional symmetrical VM in which they are charged and discharged twice per cycle. The three-phase symmetrical structure completely eliminates the first five harmonic components of load-generated voltage ripple. Theoretical analysis indicates that the proposed three-phase symmetrical CW-VM has one-third the voltage ripple and voltage drop of the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the proposed three-phase symmetrical CW-VM as well as of the conventional single-phase symmetrical CW-VM are presented. A comparison shows that the three-phase symmetrical CW-VM has significantly less voltage ripple, half the voltage drop, and a fourfold increase in output power over the conventional single-phase symmetrical CW-VM.