A Hybrid Strategy Improved Whale Optimization Algorithm for Web Service Composition

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Journal Pub Date : 2021-10-01 DOI:10.1093/comjnl/bxab187
Chuanxiang Ju;Hangqi Ding;Benjia Hu
{"title":"A Hybrid Strategy Improved Whale Optimization Algorithm for Web Service Composition","authors":"Chuanxiang Ju;Hangqi Ding;Benjia Hu","doi":"10.1093/comjnl/bxab187","DOIUrl":null,"url":null,"abstract":"With the rapid growth of the number of web services on the Internet, various service providers provide many similar services with the same function but different quality of service (QoS) attributes. It is a key problem to be solved urgently to select the service composition quickly, meeting the users’ QoS requirements from many candidate services. Optimization of web service composition is an NP-hard issue and intelligent optimization algorithms have become the mainstream method to solve this complex problem. This paper proposed a hybrid strategy improved whale optimization algorithm, which is based on the concepts of chaos initialization, nonlinear convergence factor and mutation. By maintaining a balance between exploration and exploitation, the problem of slow or early convergence is overcome to a certain extent. To evaluate its performance more accurately, the proposed algorithm was first tested on a set of standard benchmarks. After, simulations were performed using the real quality of web service dataset. Experimental results show that the proposed algorithm is better than the original version and other meta-heuristic algorithms on average, as well as verifies the feasibility and stability of web service composition optimization.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"66 3","pages":"662-677"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10084366/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 5

Abstract

With the rapid growth of the number of web services on the Internet, various service providers provide many similar services with the same function but different quality of service (QoS) attributes. It is a key problem to be solved urgently to select the service composition quickly, meeting the users’ QoS requirements from many candidate services. Optimization of web service composition is an NP-hard issue and intelligent optimization algorithms have become the mainstream method to solve this complex problem. This paper proposed a hybrid strategy improved whale optimization algorithm, which is based on the concepts of chaos initialization, nonlinear convergence factor and mutation. By maintaining a balance between exploration and exploitation, the problem of slow or early convergence is overcome to a certain extent. To evaluate its performance more accurately, the proposed algorithm was first tested on a set of standard benchmarks. After, simulations were performed using the real quality of web service dataset. Experimental results show that the proposed algorithm is better than the original version and other meta-heuristic algorithms on average, as well as verifies the feasibility and stability of web service composition optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Web服务组合的混合策略改进鲸鱼优化算法
随着互联网上网络服务数量的快速增长,各种服务提供商提供了许多具有相同功能但不同服务质量(QoS)属性的类似服务。快速选择服务组合,从众多候选服务中满足用户的QoS要求,是一个亟待解决的关键问题。web服务组合优化是一个NP难题,智能优化算法已成为解决这一复杂问题的主流方法。基于混沌初始化、非线性收敛因子和变异的概念,提出了一种混合策略改进的whale优化算法。通过在勘探和开发之间保持平衡,在一定程度上克服了缓慢或早期收敛的问题。为了更准确地评估其性能,该算法首先在一组标准基准上进行了测试。之后,使用真实质量的web服务数据集进行了仿真。实验结果表明,该算法平均优于原始版本和其他元启发式算法,验证了web服务组合优化的可行性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
期刊最新文献
Correction to: Automatic Diagnosis of Diabetic Retinopathy from Retinal Abnormalities: Improved Jaya-Based Feature Selection and Recurrent Neural Network Eager Term Rewriting For The Fracterm Calculus Of Common Meadows An Intrusion Detection Method Based on Attention Mechanism to Improve CNN-BiLSTM Model Enhancing Auditory Brainstem Response Classification Based On Vision Transformer Leveraging Meta-Learning To Improve Unsupervised Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1