Fast Link Scheduling in Wireless Networks Using Regularized Off-Policy Reinforcement Learning

Sagnik Bhattacharya;Ayan Banerjee;Subrahmanya Swamy Peruru;Kothapalli Venkata Srinivas
{"title":"Fast Link Scheduling in Wireless Networks Using Regularized Off-Policy Reinforcement Learning","authors":"Sagnik Bhattacharya;Ayan Banerjee;Subrahmanya Swamy Peruru;Kothapalli Venkata Srinivas","doi":"10.1109/LNET.2023.3264486","DOIUrl":null,"url":null,"abstract":"The centralized-link-scheduling problem in a wireless network graph involves solving the maximum-weighted-independent-set (MWIS) problem on the conflict graph. In this letter, we propose a novel regularized off-policy reinforcement learning-based MWIS solver and use for the scheduling problem. The proposed MWIS algorithm achieves 17% improvement over state-of-the-art heuristic solver KaMIS, 60% over greedy solver, 16% and 17% over RL-based solvers LwD and S2V-DQN, respectively. We show that our scheduler achieves stable throughput values 14% and 22% higher than LwD and a distributed greedy scheduler, respectively. We demonstrate the flexibility of our RL algorithm by modifying it to create a time-since-last-service-aware scheduler.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 2","pages":"86-90"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10092874/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The centralized-link-scheduling problem in a wireless network graph involves solving the maximum-weighted-independent-set (MWIS) problem on the conflict graph. In this letter, we propose a novel regularized off-policy reinforcement learning-based MWIS solver and use for the scheduling problem. The proposed MWIS algorithm achieves 17% improvement over state-of-the-art heuristic solver KaMIS, 60% over greedy solver, 16% and 17% over RL-based solvers LwD and S2V-DQN, respectively. We show that our scheduler achieves stable throughput values 14% and 22% higher than LwD and a distributed greedy scheduler, respectively. We demonstrate the flexibility of our RL algorithm by modifying it to create a time-since-last-service-aware scheduler.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于正则化非策略强化学习的无线网络快速链路调度
无线网络图中的集中式链路调度问题涉及解决冲突图上的最大加权独立集(MWIS)问题。在这封信中,我们提出了一种新的基于规则化策略外强化学习的MWIS求解器,并用于调度问题。所提出的MWIS算法分别比最先进的启发式求解器KaMIS提高了17%,比贪婪求解器提高了60%,比基于RL的求解器LwD和S2V-DQN分别提高了16%和17%。我们表明,我们的调度器实现了稳定的吞吐量值,分别比LwD和分布式贪婪调度器高14%和22%。我们通过修改RL算法来创建一个自上次服务感知调度器以来的时间,展示了RL算法的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Networking Letters Author Guidelines IEEE COMMUNICATIONS SOCIETY IEEE Communications Society Optimal Classifier for an ML-Assisted Resource Allocation in Wireless Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1