Model-based fractionation of biomass in a biological nutrient removal system and its effect on the removal efficiencies

IF 3 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Journal of Environmental Health Science and Engineering Pub Date : 2022-12-26 DOI:10.1007/s40201-022-00845-8
Neslihan Manav-Demir
{"title":"Model-based fractionation of biomass in a biological nutrient removal system and its effect on the removal efficiencies","authors":"Neslihan Manav-Demir","doi":"10.1007/s40201-022-00845-8","DOIUrl":null,"url":null,"abstract":"<div><p>Fractionation of active biomass in a five-stage Bardenpho process was accomplished using an MS Excel wastewater treatment plant modeling tool based on Activated Sludge Model No. 3 extended with a bio-P module. The biomass fractions within the treatment system were predicted as autotrophs, ordinary heterotrophs, and phosphorus accumulating organisms (PAOs). Several simulations were performed in a Bardenpho process using various C/N/P ratios in primary effluent. Biomass fractionation was obtained from steady-state simulation results. The results suggest that the mass percentage of autotrophs, heterotrophs, and PAOs in active biomass range from 1.7 to 7.8%, 5.7–69.0%, and 23.2–92.6%, respectively, depending on characteristics of primary effluent. Results of principal component analysis showed that TKN/COD ratio in primary effluent determines the population of autotrophs and ordinary heterotrophs whereas PAO population is mainly a function of TP/COD ratio.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"123 - 132"},"PeriodicalIF":3.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00845-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-022-00845-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fractionation of active biomass in a five-stage Bardenpho process was accomplished using an MS Excel wastewater treatment plant modeling tool based on Activated Sludge Model No. 3 extended with a bio-P module. The biomass fractions within the treatment system were predicted as autotrophs, ordinary heterotrophs, and phosphorus accumulating organisms (PAOs). Several simulations were performed in a Bardenpho process using various C/N/P ratios in primary effluent. Biomass fractionation was obtained from steady-state simulation results. The results suggest that the mass percentage of autotrophs, heterotrophs, and PAOs in active biomass range from 1.7 to 7.8%, 5.7–69.0%, and 23.2–92.6%, respectively, depending on characteristics of primary effluent. Results of principal component analysis showed that TKN/COD ratio in primary effluent determines the population of autotrophs and ordinary heterotrophs whereas PAO population is mainly a function of TP/COD ratio.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物营养物去除系统中基于模型的生物质分馏及其对去除效率的影响
利用MS Excel污水处理厂建模工具(基于3号活性污泥模型,扩展了生物磷模块),完成了五阶段Bardenpho工艺中活性生物质的分馏。预测处理系统内生物量组分为自养生物、普通异养生物和聚磷生物(PAOs)。在一次出水中使用不同的C/N/P比率对Bardenpho工艺进行了模拟。生物质分馏是由稳态模拟结果得到的。结果表明,根据一次出水特性的不同,活性生物量中自养、异养和PAOs的质量百分比分别为1.7 ~ 7.8%、5.7 ~ 69.0%和23.2 ~ 92.6%。主成分分析结果表明,一级出水TKN/COD比决定了自养和普通异养生物的数量,而PAO的数量主要是TP/COD比的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Health Science and Engineering
Journal of Environmental Health Science and Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
7.50
自引率
2.90%
发文量
81
期刊介绍: Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management. A broad outline of the journal''s scope includes: -Water pollution and treatment -Wastewater treatment and reuse -Air control -Soil remediation -Noise and radiation control -Environmental biotechnology and nanotechnology -Food safety and hygiene
期刊最新文献
Biomonitoring of metals in the blood and urine of waste recyclers from exposure to airborne fine particulate matter (PM2.5) Association between particulate matter exposure and acute ischemic stroke admissions in less-polluted areas: a time-series study using a distributed lag nonlinear model Assessing health risks of polycyclic aromatic hydrocarbons (PAHs) in cooked fish using monte carlo simulation: a global review and meta-analysis Correction: Comprehensive systematic review and meta-analysis of microplastic prevalence and abundance in freshwater fish species: the effect of fish species habitat, feeding behavior, and Fulton’s condition factor Microplastic predictive modelling with the integration of Artificial Neural Networks and Hidden Markov Models (ANN-HMM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1