{"title":"Digital correction of PWM switching amplifiers","authors":"P. Midya;B. Roeckner;S. Bergstedt","doi":"10.1109/LPEL.2004.834795","DOIUrl":null,"url":null,"abstract":"Pulsewidth modulated (PWM) signals for driving a switching audio amplifier can be synthesized in the digital domain with extremely high linearity and precision. However, nonidealities associated with the power stage degrade output performance. A method to digitally correct for these nonidealities, resulting in very low total harmonic distortion (THD) and high signal-to-noise ratio (SNR) performance, is presented. This method also provides excellent rejection of power supply noise which is otherwise absent in digital PWM amplifiers. To meet noise requirements for hi-fi audio, the feedback structure is a fourth-order structure which shapes the noise beyond the audio band. The method has been implemented on a bread board, and state-of-the-art performance was achieved. Total harmonic distortion of 85 dB and dynamic range of 100 dB was measured using Audio Precision test equipment.","PeriodicalId":100635,"journal":{"name":"IEEE Power Electronics Letters","volume":"2 2","pages":"68-72"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LPEL.2004.834795","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/1324659/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Pulsewidth modulated (PWM) signals for driving a switching audio amplifier can be synthesized in the digital domain with extremely high linearity and precision. However, nonidealities associated with the power stage degrade output performance. A method to digitally correct for these nonidealities, resulting in very low total harmonic distortion (THD) and high signal-to-noise ratio (SNR) performance, is presented. This method also provides excellent rejection of power supply noise which is otherwise absent in digital PWM amplifiers. To meet noise requirements for hi-fi audio, the feedback structure is a fourth-order structure which shapes the noise beyond the audio band. The method has been implemented on a bread board, and state-of-the-art performance was achieved. Total harmonic distortion of 85 dB and dynamic range of 100 dB was measured using Audio Precision test equipment.