Internal Structure Attention Network for Fingerprint Presentation Attack Detection From Optical Coherence Tomography

Haohao Sun;Yilong Zhang;Peng Chen;Haixia Wang;Ronghua Liang
{"title":"Internal Structure Attention Network for Fingerprint Presentation Attack Detection From Optical Coherence Tomography","authors":"Haohao Sun;Yilong Zhang;Peng Chen;Haixia Wang;Ronghua Liang","doi":"10.1109/TBIOM.2023.3293910","DOIUrl":null,"url":null,"abstract":"As a non-invasive optical imaging technique, optical coherence tomography (OCT) has proven promising for automatic fingerprint recognition system (AFRS) applications. Diverse approaches have been proposed for OCT-based fingerprint presentation attack detection (PAD). However, considering the complexity and variety of PA samples, it is extremely challenging to increase the generalization ability with the limited PA dataset. To solve the challenge, this paper presents a novel supervised learning-based PAD method, denoted as internal structure attention PAD (ISAPAD). ISAPAD applies prior knowledge to guide network training. Specifically, the proposed dual-branch architecture in ISAPAD can not only learn global features from the OCT images, but also concentrate on the layered structure feature which come from the internal structure attention module (ISAM). The simple yet effective ISAM enables the network to obtain layered segmentation features exclusively belonging to Bonafide from noisy OCT volume data. By incorporating effective training strategies and PAD score generation rules, ISAPAD ensures reliable PAD performance even with limited training data. Extensive experiments and visualization analysis substantiate the effectiveness of the proposed method for OCT PAD.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"5 4","pages":"524-537"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10182344/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a non-invasive optical imaging technique, optical coherence tomography (OCT) has proven promising for automatic fingerprint recognition system (AFRS) applications. Diverse approaches have been proposed for OCT-based fingerprint presentation attack detection (PAD). However, considering the complexity and variety of PA samples, it is extremely challenging to increase the generalization ability with the limited PA dataset. To solve the challenge, this paper presents a novel supervised learning-based PAD method, denoted as internal structure attention PAD (ISAPAD). ISAPAD applies prior knowledge to guide network training. Specifically, the proposed dual-branch architecture in ISAPAD can not only learn global features from the OCT images, but also concentrate on the layered structure feature which come from the internal structure attention module (ISAM). The simple yet effective ISAM enables the network to obtain layered segmentation features exclusively belonging to Bonafide from noisy OCT volume data. By incorporating effective training strategies and PAD score generation rules, ISAPAD ensures reliable PAD performance even with limited training data. Extensive experiments and visualization analysis substantiate the effectiveness of the proposed method for OCT PAD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学相干层析指纹表示攻击检测的内部结构注意网络
光学相干层析成像(OCT)作为一种非侵入式光学成像技术,在自动指纹识别系统(AFRS)中有着广阔的应用前景。针对基于oct的指纹表示攻击检测(PAD),提出了多种方法。然而,考虑到PA样本的复杂性和多样性,在有限的PA数据集上提高泛化能力是极具挑战性的。为了解决这一挑战,本文提出了一种新的基于监督学习的PAD方法,称为内部结构注意PAD (ISAPAD)。ISAPAD运用先验知识指导网络训练。具体而言,ISAPAD中的双分支架构不仅可以从OCT图像中学习全局特征,还可以集中学习来自内部结构注意模块(ISAM)的分层结构特征。简单而有效的ISAM使网络能够从嘈杂的OCT体积数据中获得专属于Bonafide的分层分割特征。通过结合有效的训练策略和PAD得分生成规则,ISAPAD即使在有限的训练数据下也能确保可靠的PAD性能。大量的实验和可视化分析证实了所提出的OCT PAD方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE T-BIOM Editorial Board Changes IEEE Transactions on Biometrics, Behavior, and Identity Science Publication Information IEEE Transactions on Biometrics, Behavior, and Identity Science Information for Authors 2024 Index IEEE Transactions on Biometrics, Behavior, and Identity Science Vol. 6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1