Multi-Day Analysis of Wrist Electromyogram-Based Biometrics for Authentication and Personal Identification

Ashirbad Pradhan;Jiayuan He;Hyowon Lee;Ning Jiang
{"title":"Multi-Day Analysis of Wrist Electromyogram-Based Biometrics for Authentication and Personal Identification","authors":"Ashirbad Pradhan;Jiayuan He;Hyowon Lee;Ning Jiang","doi":"10.1109/TBIOM.2023.3299948","DOIUrl":null,"url":null,"abstract":"Recently, electromyogram (EMG) has been proposed for addressing some key limitations of current biometrics. Wrist-worn wearable sensors can provide a non-invasive method for acquiring EMG signals for gesture recognition or biometric applications. EMG signals contain individuals’ information and can facilitate multi-length codes or passwords (for example, by performing a combination of hand gestures). However, current EMG-based biometric research has two critical limitations: small subject-pool for analysis and limited to single-session datasets. In this study, wrist EMG data were collected from 43 participants over three different days (Days 1, 8, and 29) while performing static hand/wrist gestures. Multi-day analysis involving training data and testing data from different days was employed to test the robustness of the EMG-based biometrics. The multi-day authentication resulted in a median equal error rate (EER) of 0.039 when the code is unknown, and an EER of 0.068 when the code is known to intruders. The multi-day identification achieved a median rank-5 accuracy of 93.0%. With intruders, a threshold-based identification resulted in a median rank-5 accuracy of 91.7% while intruders were denied access at a median rejection rate of 71.7%. These results demonstrated the potential of EMG-based biometrics in practical applications and bolster further research on EMG-based biometrics.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"5 4","pages":"553-565"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8423754/10273758/10216354.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10216354/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, electromyogram (EMG) has been proposed for addressing some key limitations of current biometrics. Wrist-worn wearable sensors can provide a non-invasive method for acquiring EMG signals for gesture recognition or biometric applications. EMG signals contain individuals’ information and can facilitate multi-length codes or passwords (for example, by performing a combination of hand gestures). However, current EMG-based biometric research has two critical limitations: small subject-pool for analysis and limited to single-session datasets. In this study, wrist EMG data were collected from 43 participants over three different days (Days 1, 8, and 29) while performing static hand/wrist gestures. Multi-day analysis involving training data and testing data from different days was employed to test the robustness of the EMG-based biometrics. The multi-day authentication resulted in a median equal error rate (EER) of 0.039 when the code is unknown, and an EER of 0.068 when the code is known to intruders. The multi-day identification achieved a median rank-5 accuracy of 93.0%. With intruders, a threshold-based identification resulted in a median rank-5 accuracy of 91.7% while intruders were denied access at a median rejection rate of 71.7%. These results demonstrated the potential of EMG-based biometrics in practical applications and bolster further research on EMG-based biometrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于腕部肌电图的生物识别技术用于身份验证和个人识别的多日分析
最近,肌电图(EMG)被提出用于解决当前生物识别的一些关键局限性。腕戴式可穿戴传感器可以提供一种非侵入式的方法来获取肌电信号,用于手势识别或生物识别应用。肌电图信号包含个人信息,可以方便多长度的代码或密码(例如,通过执行手势组合)。然而,目前基于肌电图的生物识别研究有两个关键的局限性:用于分析的主题池小,仅限于单会话数据集。在这项研究中,43名参与者在3天内(第1、8和29天)进行静态手/手腕手势时,收集了手腕肌电图数据。采用多天分析,包括训练数据和不同天的测试数据,以测试基于肌电图的生物识别的鲁棒性。当代码未知时,多日身份验证的平均错误率(EER)为0.039,当入侵者知道代码时,EER为0.068。多日识别的中位5级准确率为93.0%。对于入侵者,基于阈值的识别导致排名5的中位数准确率为91.7%,而入侵者被拒绝访问的中位数拒绝率为71.7%。这些结果证明了基于肌电图的生物识别技术在实际应用中的潜力,并支持了基于肌电图的生物识别技术的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE T-BIOM Editorial Board Changes IEEE Transactions on Biometrics, Behavior, and Identity Science Publication Information IEEE Transactions on Biometrics, Behavior, and Identity Science Information for Authors 2024 Index IEEE Transactions on Biometrics, Behavior, and Identity Science Vol. 6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1