Hierarchical clustering and matrix completion for the reconstruction of world input–output tables

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2022-06-02 DOI:10.1007/s10182-022-00448-6
Rodolfo Metulini, Giorgio Gnecco, Francesco Biancalani, Massimo Riccaboni
{"title":"Hierarchical clustering and matrix completion for the reconstruction of world input–output tables","authors":"Rodolfo Metulini,&nbsp;Giorgio Gnecco,&nbsp;Francesco Biancalani,&nbsp;Massimo Riccaboni","doi":"10.1007/s10182-022-00448-6","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-regional input–output (I/O) matrices provide the networks of within- and cross-country economic relations. In the context of I/O analysis, the methodology adopted by national statistical offices in data collection raises the issue of obtaining reliable data in a timely fashion and it makes the reconstruction of (parts of) the I/O matrices of particular interest. In this work, we propose a method combining hierarchical clustering and matrix completion with a LASSO-like nuclear norm penalty, to predict missing entries of a partially unknown I/O matrix. Through analyses based on both real-world and synthetic I/O matrices, we study the effectiveness of the proposed method to predict missing values from both previous years data and current data related to countries similar to the one for which current data are obscured. To show the usefulness of our method, an application based on World Input–Output Database (WIOD) tables—which are an example of industry-by-industry I/O tables—is provided. Strong similarities in structure between WIOD and other I/O tables are also found, which make the proposed approach easily generalizable to them.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"107 3","pages":"575 - 620"},"PeriodicalIF":1.4000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00448-6.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00448-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

Multi-regional input–output (I/O) matrices provide the networks of within- and cross-country economic relations. In the context of I/O analysis, the methodology adopted by national statistical offices in data collection raises the issue of obtaining reliable data in a timely fashion and it makes the reconstruction of (parts of) the I/O matrices of particular interest. In this work, we propose a method combining hierarchical clustering and matrix completion with a LASSO-like nuclear norm penalty, to predict missing entries of a partially unknown I/O matrix. Through analyses based on both real-world and synthetic I/O matrices, we study the effectiveness of the proposed method to predict missing values from both previous years data and current data related to countries similar to the one for which current data are obscured. To show the usefulness of our method, an application based on World Input–Output Database (WIOD) tables—which are an example of industry-by-industry I/O tables—is provided. Strong similarities in structure between WIOD and other I/O tables are also found, which make the proposed approach easily generalizable to them.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
世界输入输出表重构的层次聚类和矩阵补全
多区域投入产出(I/O)矩阵提供国内和跨国经济关系网络。在输入/输出分析方面,国家统计局在收集数据时采用的方法提出了及时获得可靠数据的问题,并使(部分)输入/输出矩阵的重建特别令人感兴趣。在这项工作中,我们提出了一种结合分层聚类和矩阵补全以及类似lasso的核范数惩罚的方法,来预测部分未知I/O矩阵的缺失条目。通过基于真实世界和合成I/O矩阵的分析,我们研究了所提出的方法在预测前几年数据和当前数据中缺失值的有效性,这些数据与当前数据模糊的国家相似。为了展示我们的方法的实用性,提供了一个基于世界输入输出数据库(World Input-Output Database, WIOD)表的应用程序——它是各行业I/O表的一个示例。wid和其他I/O表在结构上也有很强的相似性,这使得所提出的方法很容易推广到它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors Classes of probability measures built on the properties of Benford’s law Publisher Correction: Deducing neighborhoods of classes from a fitted model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1