Finite convergence into a convex polytope via facet reflections

Pub Date : 2022-11-03 DOI:10.21136/AM.2022.0134-22
Dinesh B. Ekanayake, Douglas J. LaFountain, Boris Petracovici
{"title":"Finite convergence into a convex polytope via facet reflections","authors":"Dinesh B. Ekanayake,&nbsp;Douglas J. LaFountain,&nbsp;Boris Petracovici","doi":"10.21136/AM.2022.0134-22","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of utilizing facet reflections to bring a point outside of a convex polytope to inside has not been studied explicitly in the literature. Here we introduce two algorithms that complete the task in finite iterations. The first algorithm generates multiple solutions on the plane, and can be readily utilized in creating games on a plane or as a level generation method for video games. The second algorithm is a new efficient way to bring infeasible starting points of an optimization problem to inside a feasible region defined by constraints. Using simulations, we demonstrate many desirable properties of the algorithm. Specifically, more edges do not lead to more iterations in ℝ<sup>2</sup>, the algorithm is extremely efficient in high dimensions, and it can be employed to discretize the feasibility region using a grid of points outside the region.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2022.0134-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of utilizing facet reflections to bring a point outside of a convex polytope to inside has not been studied explicitly in the literature. Here we introduce two algorithms that complete the task in finite iterations. The first algorithm generates multiple solutions on the plane, and can be readily utilized in creating games on a plane or as a level generation method for video games. The second algorithm is a new efficient way to bring infeasible starting points of an optimization problem to inside a feasible region defined by constraints. Using simulations, we demonstrate many desirable properties of the algorithm. Specifically, more edges do not lead to more iterations in ℝ2, the algorithm is extremely efficient in high dimensions, and it can be employed to discretize the feasibility region using a grid of points outside the region.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
通过面反射有限收敛到凸多面体
利用面反射将凸多面体外的点引入凸多面体内的问题在文献中尚未得到明确的研究。在这里,我们介绍两种算法在有限迭代中完成任务。第一种算法在平面上生成多个解决方案,并且可以很容易地用于在平面上创建游戏或作为电子游戏的关卡生成方法。第二种算法是将优化问题的不可行的起始点引入由约束定义的可行区域内的一种新的有效方法。通过仿真,我们证明了该算法的许多理想特性。该算法在高维空间效率极高,可以利用区域外点的网格对可行性区域进行离散化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1