Yucheng Zhao, Haoran Geng, Jun Liang, Yafei Wang, Long Chen, Linhao Xu, Wanjia Wang
{"title":"Effects of Driver Response Time Under Take-Over Control Based on CAR-ToC Model in Human–Machine Mixed Traffic Flow","authors":"Yucheng Zhao, Haoran Geng, Jun Liang, Yafei Wang, Long Chen, Linhao Xu, Wanjia Wang","doi":"10.1007/s42154-022-00207-y","DOIUrl":null,"url":null,"abstract":"<div><p>The take-over control (ToC) of human–machine interaction is a hotspot. From automatic driving to manual driving, some factors affecting driver response time have not been considered in existing models, and little attention has been paid to its effects on mixed traffic flow. This study establishes a ToC model of response based on adaptive control of thought-rational cognitive architecture (CAR-ToC) to investigate the effects of driver response time on traffic flow. A quantification method of driver’s situation cognition uncertainty is also proposed. This method can directly describe the cognitive effect of drivers with different cognitive characteristics on vehicle cluster situations. The results show that when driver response time in ToC is 4.2 s, the traffic state is the best. The greater the response time is, the more obvious the stop-and-go waves exhibit. Besides, crashes happen when manual vehicles hit other types of vehicles in ToC. Effects of driver response time on traffic are illustrated and verified from various aspects. Experiments are designed to verify that road efficiency and safety are increased by using a dynamic take-over strategy. Further, internal causes of effects are revealed and suggestions are discussed for the safety and efficiency of autonomous vehicles.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"6 1","pages":"3 - 19"},"PeriodicalIF":4.8000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00207-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The take-over control (ToC) of human–machine interaction is a hotspot. From automatic driving to manual driving, some factors affecting driver response time have not been considered in existing models, and little attention has been paid to its effects on mixed traffic flow. This study establishes a ToC model of response based on adaptive control of thought-rational cognitive architecture (CAR-ToC) to investigate the effects of driver response time on traffic flow. A quantification method of driver’s situation cognition uncertainty is also proposed. This method can directly describe the cognitive effect of drivers with different cognitive characteristics on vehicle cluster situations. The results show that when driver response time in ToC is 4.2 s, the traffic state is the best. The greater the response time is, the more obvious the stop-and-go waves exhibit. Besides, crashes happen when manual vehicles hit other types of vehicles in ToC. Effects of driver response time on traffic are illustrated and verified from various aspects. Experiments are designed to verify that road efficiency and safety are increased by using a dynamic take-over strategy. Further, internal causes of effects are revealed and suggestions are discussed for the safety and efficiency of autonomous vehicles.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.