A Trajectory Planning Method of Automatic Lane Change Based on Dynamic Safety Domain

IF 4.8 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Automotive Innovation Pub Date : 2023-09-09 DOI:10.1007/s42154-023-00224-5
Yangyang Wang, Xiaolang Cao, Yulun Hu
{"title":"A Trajectory Planning Method of Automatic Lane Change Based on Dynamic Safety Domain","authors":"Yangyang Wang,&nbsp;Xiaolang Cao,&nbsp;Yulun Hu","doi":"10.1007/s42154-023-00224-5","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional research on automatic lane change has primarily focused on high-speed scenarios and has not considered the dynamic state changes of surrounding vehicles. This paper addresses this problem by proposing a trajectory planning method to enable automatic lane change at medium and low speeds. The method is based on a dynamic safety domain model, which takes into account the actual state change of surrounding vehicles, as well as the upper boundary of the safety domain for collision avoidance and the lower boundary of comfort for vehicle stability. The proposed method involves the quantification of the safety and comfort boundaries through parametric modeling of the vehicle. A quintic polynomial trajectory planning method is proposed and evaluated through simulation and testing, resulting in improved safety and comfort for automatic lane change.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"6 3","pages":"466 - 480"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-023-00224-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional research on automatic lane change has primarily focused on high-speed scenarios and has not considered the dynamic state changes of surrounding vehicles. This paper addresses this problem by proposing a trajectory planning method to enable automatic lane change at medium and low speeds. The method is based on a dynamic safety domain model, which takes into account the actual state change of surrounding vehicles, as well as the upper boundary of the safety domain for collision avoidance and the lower boundary of comfort for vehicle stability. The proposed method involves the quantification of the safety and comfort boundaries through parametric modeling of the vehicle. A quintic polynomial trajectory planning method is proposed and evaluated through simulation and testing, resulting in improved safety and comfort for automatic lane change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态安全域的自动变道轨迹规划方法
传统的自动变道研究主要集中在高速工况下,没有考虑到周围车辆的动态变化。针对这一问题,本文提出了一种实现中低速自动变道的轨迹规划方法。该方法基于动态安全域模型,该模型考虑了周围车辆的实际状态变化,同时考虑了安全域的上边界以避免碰撞,舒适性的下边界以保证车辆的稳定性。该方法通过对车辆进行参数化建模,对安全边界和舒适边界进行量化。提出了一种五次多项式轨迹规划方法,并通过仿真和试验验证了该方法的有效性,提高了自动变道的安全性和舒适性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automotive Innovation
Automotive Innovation Engineering-Automotive Engineering
CiteScore
8.50
自引率
4.90%
发文量
36
期刊介绍: Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.
期刊最新文献
Driver Steering Behaviour Modelling Based on Neuromuscular Dynamics and Multi-Task Time-Series Transformer Mechanically Joined Extrusion Profiles for Battery Trays Mode Switching and Consistency Control for Electric-Hydraulic Hybrid Steering System Review of Electrical and Electronic Architectures for Autonomous Vehicles: Topologies, Networking and Simulators In-Vehicle Network Injection Attacks Detection Based on Feature Selection and Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1