{"title":"Performance Limit Evaluation Strategy for Automated Driving Systems","authors":"Feng Gao, Jianwei Mu, Xiangyu Han, Yiheng Yang, Junwu Zhou","doi":"10.1007/s42154-021-00168-8","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient detection of performance limits is critical to autonomous driving. As autonomous driving is difficult to be realized under complicated scenarios, an improved genetic algorithm-based evolution test is proposed to accelerate the evaluation of performance limits. It conducts crossover operation at all positions and mutation several times to make the high-quality chromosome exist in candidate offspring easily. Then the normal offspring is selected statistically based on the scenario complexity, which is designed to measure the difficulty of realizing autonomous driving through the Analytic Hierarchy Process. The benefits of modified cross/mutation operators on the improvement of scenario complexity are analyzed theoretically. Finally, the effectiveness of improved genetic algorithm-based evolution test is validated after being applied to evaluate the collision avoidance performance of an automatic parallel parking system.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"5 1","pages":"79 - 90"},"PeriodicalIF":4.8000,"publicationDate":"2022-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-021-00168-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient detection of performance limits is critical to autonomous driving. As autonomous driving is difficult to be realized under complicated scenarios, an improved genetic algorithm-based evolution test is proposed to accelerate the evaluation of performance limits. It conducts crossover operation at all positions and mutation several times to make the high-quality chromosome exist in candidate offspring easily. Then the normal offspring is selected statistically based on the scenario complexity, which is designed to measure the difficulty of realizing autonomous driving through the Analytic Hierarchy Process. The benefits of modified cross/mutation operators on the improvement of scenario complexity are analyzed theoretically. Finally, the effectiveness of improved genetic algorithm-based evolution test is validated after being applied to evaluate the collision avoidance performance of an automatic parallel parking system.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.