Deforestation Drivers Across the Tropics and Their Impacts on Carbon Stocks and Ecosystem Services

Tobias Seydewitz, Prajal Pradhan, David M. Landholm, Juergen P. Kropp
{"title":"Deforestation Drivers Across the Tropics and Their Impacts on Carbon Stocks and Ecosystem Services","authors":"Tobias Seydewitz,&nbsp;Prajal Pradhan,&nbsp;David M. Landholm,&nbsp;Juergen P. Kropp","doi":"10.1007/s44177-023-00051-7","DOIUrl":null,"url":null,"abstract":"<div><p>Globally, deforestation produces anthropogenic greenhouse gas (GHG) emissions, contributing substantially to climate change. Forest cover changes also have large impacts on ecosystem services. Deforestation is the dominant type of land cover change in tropical regions, and this land cover change relates to distinct causes recognized as direct deforestation drivers. Understanding these drivers requires a significant effort. Further, GHG emissions due to deforestation are quantified only in terms of biomass removal, while linking emissions from soil organic carbon (SOC) loss to deforestation is lacking. A closer picture of associated ecosystem service changes due to deforestation is also needed. We analyze for 2001–2010: (1) the magnitudes of deforestation drivers, (2) the related carbon loss, and (3) the ecosystem service value change. On the global scale, agriculture (90.3%) is the primary deforestation driver, where grassland expansion contributed the most (37.5%). The deforestation drivers differ in magnitude and spatial distribution on the continental scale. The total carbon loss by biomass removal and SOC loss accounted for 8797 Mt C and 1185 Mt C, respectively. Furthermore, tropical deforestation caused the ESV loss of 408 billion Int.$ year<span>\\(^{-1}\\)</span>, while the resulting land cover has the ESV of 345 billion Int.$ year<span>\\(^{-1}\\)</span>. Our findings highlight that agriculture substantially contributes to global carbon loss and ecosystem service loss due to deforestation. The deforestation drivers differ in magnitude and distribution for different continents. Further, we highlight the danger of putting a monetary value on nature.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"2 1","pages":"81 - 92"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44177-023-00051-7.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropocene Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44177-023-00051-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Globally, deforestation produces anthropogenic greenhouse gas (GHG) emissions, contributing substantially to climate change. Forest cover changes also have large impacts on ecosystem services. Deforestation is the dominant type of land cover change in tropical regions, and this land cover change relates to distinct causes recognized as direct deforestation drivers. Understanding these drivers requires a significant effort. Further, GHG emissions due to deforestation are quantified only in terms of biomass removal, while linking emissions from soil organic carbon (SOC) loss to deforestation is lacking. A closer picture of associated ecosystem service changes due to deforestation is also needed. We analyze for 2001–2010: (1) the magnitudes of deforestation drivers, (2) the related carbon loss, and (3) the ecosystem service value change. On the global scale, agriculture (90.3%) is the primary deforestation driver, where grassland expansion contributed the most (37.5%). The deforestation drivers differ in magnitude and spatial distribution on the continental scale. The total carbon loss by biomass removal and SOC loss accounted for 8797 Mt C and 1185 Mt C, respectively. Furthermore, tropical deforestation caused the ESV loss of 408 billion Int.$ year\(^{-1}\), while the resulting land cover has the ESV of 345 billion Int.$ year\(^{-1}\). Our findings highlight that agriculture substantially contributes to global carbon loss and ecosystem service loss due to deforestation. The deforestation drivers differ in magnitude and distribution for different continents. Further, we highlight the danger of putting a monetary value on nature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热带地区森林砍伐的驱动因素及其对碳储量和生态系统服务的影响
在全球范围内,森林砍伐产生人为温室气体(GHG)排放,大大加剧了气候变化。森林覆盖变化对生态系统服务也有很大影响。森林砍伐是热带地区土地覆盖变化的主要类型,这种土地覆盖变化与被认为是森林砍伐直接驱动因素的不同原因有关。理解这些驱动因素需要付出巨大的努力。此外,森林砍伐造成的温室气体排放仅以生物量去除来量化,而缺乏将土壤有机碳(SOC)损失的排放与森林砍伐联系起来。还需要更详细地了解森林砍伐造成的相关生态系统服务变化。我们分析了2001-2010年森林砍伐驱动力的大小,相关的碳损失,以及生态系统服务价值的变化。在全球范围内,农业(90.3%) is the primary deforestation driver, where grassland expansion contributed the most (37.5%). The deforestation drivers differ in magnitude and spatial distribution on the continental scale. The total carbon loss by biomass removal and SOC loss accounted for 8797 Mt C and 1185 Mt C, respectively. Furthermore, tropical deforestation caused the ESV loss of 408 billion Int.$ year\(^{-1}\), while the resulting land cover has the ESV of 345 billion Int.$ year\(^{-1}\). Our findings highlight that agriculture substantially contributes to global carbon loss and ecosystem service loss due to deforestation. The deforestation drivers differ in magnitude and distribution for different continents. Further, we highlight the danger of putting a monetary value on nature.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Viable World in the Anthropocene: Living Together in the Common Home of Planet Earth Cropping System Intensification: Implications on Food Security and Environmental Sustainability in India The Impact of Renewable Energy, Green Finance, and Carbon Emission on Economic Growth: Perspective from Newly Industrialized Economies Microbiome Bioprospecting for Sustainable Agrobiome and Circular Bioeconomy Micro- and Nanoplastic Pollution in the Anthropocene: Understanding and Addressing a Global Crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1