Inference for nonstationary time series of counts with application to change-point problems

Pub Date : 2022-01-18 DOI:10.1007/s10463-021-00815-1
William Kengne, Isidore S. Ngongo
{"title":"Inference for nonstationary time series of counts with application to change-point problems","authors":"William Kengne,&nbsp;Isidore S. Ngongo","doi":"10.1007/s10463-021-00815-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider an integer-valued time series <span>\\((Y_t)_{t\\in {\\mathbb {Z}}}\\)</span> where the model after a time <span>\\(k^*\\)</span> is Poisson autoregressive with the conditional mean that depends on a parameter <span>\\(\\theta ^*\\in \\varTheta \\subset {\\mathbb {R}}^d\\)</span>. The structure of the process before <span>\\(k^*\\)</span> is unknown; it could be any other integer-valued process, that is, <span>\\((Y_t)_{t\\in {\\mathbb {Z}}}\\)</span> could be nonstationary. It is established that the maximum likelihood estimator of <span>\\(\\theta ^*\\)</span> computed on the nonstationary observations is consistent and asymptotically normal. Subsequently, we carry out the sequential change-point detection in a large class of Poisson autoregressive models, and propose a monitoring scheme for detecting change. The procedure is based on an updated estimator, which is computed without the historical observations. The above results of inference in a nonstationary setting are applied to prove the consistency of the proposed procedure. A simulation study as well as a real data application are provided.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-021-00815-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider an integer-valued time series \((Y_t)_{t\in {\mathbb {Z}}}\) where the model after a time \(k^*\) is Poisson autoregressive with the conditional mean that depends on a parameter \(\theta ^*\in \varTheta \subset {\mathbb {R}}^d\). The structure of the process before \(k^*\) is unknown; it could be any other integer-valued process, that is, \((Y_t)_{t\in {\mathbb {Z}}}\) could be nonstationary. It is established that the maximum likelihood estimator of \(\theta ^*\) computed on the nonstationary observations is consistent and asymptotically normal. Subsequently, we carry out the sequential change-point detection in a large class of Poisson autoregressive models, and propose a monitoring scheme for detecting change. The procedure is based on an updated estimator, which is computed without the historical observations. The above results of inference in a nonstationary setting are applied to prove the consistency of the proposed procedure. A simulation study as well as a real data application are provided.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
非平稳计数时间序列的推理及其在变点问题中的应用
我们考虑一个整数值时间序列\((Y_t)_{t\ in{\mathbb{Z}}),其中时间之后的模型\(k^*\)是泊松自回归的,其条件均值取决于参数\(\theta^*\ in \varTheta\subet{\math bb{R}}^d\)。在\(k^*\)之前的过程的结构是未知的;它可以是任何其他的整数值过程,即\((Y_t)_{t\in{\mathbb{Z}})可以是非平稳的。证明了在非平稳观测上计算的\(θ^*\)的最大似然估计是一致的和渐近正态的。随后,我们在一大类泊松自回归模型中进行了序列变化点检测,并提出了一种检测变化的监测方案。该程序基于更新的估计器,该估计器是在没有历史观测的情况下计算的。以上在非平稳环境下的推理结果被用来证明所提出的过程的一致性。提供了仿真研究和实际数据应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1