Acoustic Attenuation of Hybrid Sonic Crystal Made with Periodic Cylindrical Scatterers and Porous Panels

IF 1.7 4区 物理与天体物理 Acoustics Australia Pub Date : 2021-05-10 DOI:10.1007/s40857-021-00239-0
Karisma Mohapatra, D. P. Jena
{"title":"Acoustic Attenuation of Hybrid Sonic Crystal Made with Periodic Cylindrical Scatterers and Porous Panels","authors":"Karisma Mohapatra,&nbsp;D. P. Jena","doi":"10.1007/s40857-021-00239-0","DOIUrl":null,"url":null,"abstract":"<div><p>Acoustic attenuation of a hybrid sonic crystal made with periodic cylindrical scatterers and cascaded porous panels in a broad frequency range is endeavoured in this paper. It is observed via simulations that, the insertion loss (IL) of hybrid configuration is larger than the summation of IL of individual contributors such as periodic scatterers and parallel porous panels in post first Bragg resonance frequency band. The key finding of the research is that the passband in post first Bragg resonance is turning to stopband on introducing the cascaded porous panels within scatterers. Other configurations such as periodic array of cylindrical scatterers in series with porous panels in upstream, downstream and bounded with porous panels are examined and compared. The potential of said claim is shown by investigating a multi-resonant array of scatterers with cascaded porous panels. Finally, the experimental results are presented to authenticate the observed findings of simulations.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40857-021-00239-0","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-021-00239-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Acoustic attenuation of a hybrid sonic crystal made with periodic cylindrical scatterers and cascaded porous panels in a broad frequency range is endeavoured in this paper. It is observed via simulations that, the insertion loss (IL) of hybrid configuration is larger than the summation of IL of individual contributors such as periodic scatterers and parallel porous panels in post first Bragg resonance frequency band. The key finding of the research is that the passband in post first Bragg resonance is turning to stopband on introducing the cascaded porous panels within scatterers. Other configurations such as periodic array of cylindrical scatterers in series with porous panels in upstream, downstream and bounded with porous panels are examined and compared. The potential of said claim is shown by investigating a multi-resonant array of scatterers with cascaded porous panels. Finally, the experimental results are presented to authenticate the observed findings of simulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
周期性圆柱散射体与多孔板混合声晶体的声衰减
本文研究了由周期圆柱形散射体和级联多孔板制成的混合声波晶体在宽频率范围内的声衰减。通过模拟观察到,在后第一布拉格谐振频带中,混合配置的插入损耗(IL)大于单个贡献者(如周期性散射体和平行多孔板)的插入损耗之和。研究的关键发现是,在散射体中引入级联多孔板时,后第一布拉格谐振中的通带正转向阻带。检查并比较了其他配置,如与上游、下游多孔板串联并与多孔板结合的圆柱形散射体的周期阵列。通过研究具有级联多孔面板的多谐振散射体阵列,显示了上述权利要求的潜力。最后,给出了实验结果,以验证模拟的观测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acoustics Australia
Acoustics Australia ACOUSTICS-
自引率
5.90%
发文量
24
期刊介绍: Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.
期刊最新文献
News Item Experimental Assessment of the Flow Recirculation Effect on the Noise Measurement of a Free-Flying Multi-rotor UAS in a Closed Anechoic Chamber Source Depth Discrimination Based on Interference Spectrum in Deep Water with an Incomplete Channel The Increasing Application of DIN 4150-3 for the Assessment of Potential Damage to Buildings from Construction Vibration and its Implications in Australia Towards an Acoustically Accessible Campus: A Case Study of the Acoustic Conditions of an Australian University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1