{"title":"New models for symbolic data analysis","authors":"Boris Beranger, Huan Lin, Scott Sisson","doi":"10.1007/s11634-022-00520-8","DOIUrl":null,"url":null,"abstract":"<div><p>Symbolic data analysis (SDA) is an emerging area of statistics concerned with understanding and modelling data that takes distributional form (i.e. <i>symbols</i>), such as random lists, intervals and histograms. It was developed under the premise that the statistical unit of interest is the symbol, and that inference is required at this level. Here we consider a different perspective, which opens a new research direction in the field of SDA. We assume that, as with a standard statistical analysis, inference is required at the level of individual-level data. However, the individual-level data are unobserved, and are aggregated into observed symbols—group-based distributional-valued summaries—prior to the analysis. We introduce a novel general method for constructing likelihood functions for symbolic data based on a desired probability model for the underlying measurement-level data, while only observing the distributional summaries. This approach opens the door for new classes of symbol design and construction, in addition to developing SDA as a viable tool to enable and improve upon classical data analyses, particularly for very large and complex datasets. We illustrate this new direction for SDA research through several real and simulated data analyses, including a study of novel classes of multivariate symbol construction techniques.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"17 3","pages":"659 - 699"},"PeriodicalIF":1.4000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11634-022-00520-8.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-022-00520-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 14
Abstract
Symbolic data analysis (SDA) is an emerging area of statistics concerned with understanding and modelling data that takes distributional form (i.e. symbols), such as random lists, intervals and histograms. It was developed under the premise that the statistical unit of interest is the symbol, and that inference is required at this level. Here we consider a different perspective, which opens a new research direction in the field of SDA. We assume that, as with a standard statistical analysis, inference is required at the level of individual-level data. However, the individual-level data are unobserved, and are aggregated into observed symbols—group-based distributional-valued summaries—prior to the analysis. We introduce a novel general method for constructing likelihood functions for symbolic data based on a desired probability model for the underlying measurement-level data, while only observing the distributional summaries. This approach opens the door for new classes of symbol design and construction, in addition to developing SDA as a viable tool to enable and improve upon classical data analyses, particularly for very large and complex datasets. We illustrate this new direction for SDA research through several real and simulated data analyses, including a study of novel classes of multivariate symbol construction techniques.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.