Xiao Chu, Fangyu Xue, Tao Liu, Junya Shao, Junfu Li
{"title":"Adaptive Fitting Capacity Prediction Method for Lithium-Ion Batteries","authors":"Xiao Chu, Fangyu Xue, Tao Liu, Junya Shao, Junfu Li","doi":"10.1007/s42154-022-00201-4","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries have become the mainstream power source for electric vehicles because of their excellent performance. However, lithium-ion batteries still experience aging and capacity attenuation during usage. It is therefore critical to accurately predict battery remaining capacity for increasing battery safety and prolonging battery life. This paper first adopts the metabolism grey algorithm and a simplified electrochemical model to predict battery capacity under different operating conditions. To improve the prediction performance where the capacity changes nonlinearly, a decoupling analysis of battery capacity loss is then conducted based on the simplified electrochemical model. Finally, an adaptive fitting method is developed for capacity prediction, aiming at improving the prediction accuracy at the inflection point of battery capacity diving. The prediction results indicate that the developed adaptive fitting method can achieve high prediction accuracy under battery capacity attenuation at different discharge stages with errors lower than 2.2%. And the battery capacity decay shows linear variation, and the proposed method effectively forecast the inflection point of battery capacity diving.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"5 4","pages":"359 - 375"},"PeriodicalIF":4.8000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00201-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion batteries have become the mainstream power source for electric vehicles because of their excellent performance. However, lithium-ion batteries still experience aging and capacity attenuation during usage. It is therefore critical to accurately predict battery remaining capacity for increasing battery safety and prolonging battery life. This paper first adopts the metabolism grey algorithm and a simplified electrochemical model to predict battery capacity under different operating conditions. To improve the prediction performance where the capacity changes nonlinearly, a decoupling analysis of battery capacity loss is then conducted based on the simplified electrochemical model. Finally, an adaptive fitting method is developed for capacity prediction, aiming at improving the prediction accuracy at the inflection point of battery capacity diving. The prediction results indicate that the developed adaptive fitting method can achieve high prediction accuracy under battery capacity attenuation at different discharge stages with errors lower than 2.2%. And the battery capacity decay shows linear variation, and the proposed method effectively forecast the inflection point of battery capacity diving.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.