Mengyuan Gao
(, ), Zhelong He
(, ), Ougbe Anselme Ahehehinnou, Guannan Wang
(, )
{"title":"Far-field analytical solution of composite materials considering steigmann-ogden surface","authors":"Mengyuan Gao \n (, ), Zhelong He \n (, ), Ougbe Anselme Ahehehinnou, Guannan Wang \n (, )","doi":"10.1007/s10409-023-23196-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an analytical solution for two-dimensional heterogeneous materials containing nano-fibers or pores, taking into account the Steigmann-Ogden elastic surface under far-field loading. The solution is validated against numerical results from the complex function method in recent literature, and the closed-form expressions for specific displacement and stress fields are provided. The effects of surface elasticity parameters, surface residual stress, fiber/pore size, and far-field load on local stress distribution are numerically investigated. Results show that surface elasticity parameters can disturb internal stresses within the fiber domain, while surface bending stiffness parameters significantly impact stress concentrations, which is different from the uniform stress distribution in the classical Eshelby problem. The analytical expressions reveal interesting phenomena, e.g., the stress/displacement fields of fiber composites under hydrostatic load are only related to the surface Lamé parameters, and the non-constant coefficient in the analytical expression under shear load is kept twice of that under uniaxial tensile load, which are first reported in this paper. The developed solution is crucial for accurately capturing the mechanical responses of nanocomposites with significant surface effects.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-023-23196-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an analytical solution for two-dimensional heterogeneous materials containing nano-fibers or pores, taking into account the Steigmann-Ogden elastic surface under far-field loading. The solution is validated against numerical results from the complex function method in recent literature, and the closed-form expressions for specific displacement and stress fields are provided. The effects of surface elasticity parameters, surface residual stress, fiber/pore size, and far-field load on local stress distribution are numerically investigated. Results show that surface elasticity parameters can disturb internal stresses within the fiber domain, while surface bending stiffness parameters significantly impact stress concentrations, which is different from the uniform stress distribution in the classical Eshelby problem. The analytical expressions reveal interesting phenomena, e.g., the stress/displacement fields of fiber composites under hydrostatic load are only related to the surface Lamé parameters, and the non-constant coefficient in the analytical expression under shear load is kept twice of that under uniaxial tensile load, which are first reported in this paper. The developed solution is crucial for accurately capturing the mechanical responses of nanocomposites with significant surface effects.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics