Numerical and Experimental Investigations of Multiple Resonators on Reducing Tyre Cavity Resonance Noise

IF 1.7 4区 物理与天体物理 Acoustics Australia Pub Date : 2023-03-24 DOI:10.1007/s40857-023-00292-x
Yue Bao, Xiandong Liu, Zongnan Wang, Yingchun Shan, Tian He
{"title":"Numerical and Experimental Investigations of Multiple Resonators on Reducing Tyre Cavity Resonance Noise","authors":"Yue Bao,&nbsp;Xiandong Liu,&nbsp;Zongnan Wang,&nbsp;Yingchun Shan,&nbsp;Tian He","doi":"10.1007/s40857-023-00292-x","DOIUrl":null,"url":null,"abstract":"<div><p>Tyre cavity resonance noise is one kind of low-frequency and narrow-band noise that particularly affects the passengers inside the cabin of vehicle, especially when driving at a medium speed. In this paper, a noise reduction structure made of multiple resonators is proposed to reduce this type of noise. Based on the local resonance principle, the dimension of the resonator unit is determined by the tyre cavity resonance frequency. In order to obtain this characteristic frequency and the acoustic feature, the acoustic-structure coupling model of the tyre and cavity is established by the finite element method (FEM), and the modal frequency and shape of the tyre cavity are calculated and validated by the experimental results. Based on these analyses, the geometric and material parameters of the sound reduction structure are calculated to match the resonant frequency of the tyre cavity. A long belt filled with multiple resonators is designed to fit the profile of the tyre cavity, and simulations and experimental tests are conducted to investigate the noise reduction performance. The results show that the multiple resonators can significantly reduce the sound pressure inside the tyre cavity due to the vibroacoustic coupling effect. This paper provides a novel solution for reducing tyre cavity resonance noise.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-023-00292-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tyre cavity resonance noise is one kind of low-frequency and narrow-band noise that particularly affects the passengers inside the cabin of vehicle, especially when driving at a medium speed. In this paper, a noise reduction structure made of multiple resonators is proposed to reduce this type of noise. Based on the local resonance principle, the dimension of the resonator unit is determined by the tyre cavity resonance frequency. In order to obtain this characteristic frequency and the acoustic feature, the acoustic-structure coupling model of the tyre and cavity is established by the finite element method (FEM), and the modal frequency and shape of the tyre cavity are calculated and validated by the experimental results. Based on these analyses, the geometric and material parameters of the sound reduction structure are calculated to match the resonant frequency of the tyre cavity. A long belt filled with multiple resonators is designed to fit the profile of the tyre cavity, and simulations and experimental tests are conducted to investigate the noise reduction performance. The results show that the multiple resonators can significantly reduce the sound pressure inside the tyre cavity due to the vibroacoustic coupling effect. This paper provides a novel solution for reducing tyre cavity resonance noise.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多腔器降低轮胎空腔共振噪声的数值与实验研究
胎腔共振噪声是一种低频窄带噪声,特别是在中速行驶时,会对车内乘客产生影响。本文提出了一种由多个谐振器组成的降噪结构来降低这种类型的噪声。基于局部谐振原理,谐振单元的尺寸由轮胎腔谐振频率决定。为了获得该特征频率和声学特征,采用有限元法建立了轮胎与胎腔的声-结构耦合模型,并计算了胎腔的模态频率和形状,并通过实验结果进行了验证。基于这些分析,计算了降噪结构的几何参数和材料参数,以匹配轮胎空腔的谐振频率。设计了一个装有多个谐振器的长带,以适应轮胎空腔的轮廓,并进行了模拟和实验测试,以研究其降噪性能。结果表明,由于振声耦合效应,多个谐振器可以显著降低轮胎腔内的声压。本文为降低轮胎胎腔共振噪声提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acoustics Australia
Acoustics Australia ACOUSTICS-
自引率
5.90%
发文量
24
期刊介绍: Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.
期刊最新文献
News Item Experimental Assessment of the Flow Recirculation Effect on the Noise Measurement of a Free-Flying Multi-rotor UAS in a Closed Anechoic Chamber Source Depth Discrimination Based on Interference Spectrum in Deep Water with an Incomplete Channel The Increasing Application of DIN 4150-3 for the Assessment of Potential Damage to Buildings from Construction Vibration and its Implications in Australia Towards an Acoustically Accessible Campus: A Case Study of the Acoustic Conditions of an Australian University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1