{"title":"Investigation on the Acoustic Performance of Multiple Helmholtz Resonator Configurations","authors":"K. Mahesh, R. S. Mini","doi":"10.1007/s40857-021-00231-8","DOIUrl":null,"url":null,"abstract":"<div><p>Helmholtz resonator is considered and widely accepted as a basic acoustic model in engineering applications and research. In this paper, the normal incidence sound absorption characteristics of series and parallel configurations of Helmholtz resonators is studied analytically, numerically and experimentally. The proposed analytical model for series configuration of HRs comprises of Johnson–Champoux–Allard model and transfer matrix method while parallel configuration of HRs is described using parallel transfer matrix method. The results from proposed analytical models fit well with the finite element method (FEM) results obtained from COMSOL multiphysics. Incorporation of parallel configuration and proper tuning of geometric parameters helps to overcome the trade-off between broad band sound absorption and minimum space utilization. Also, the experimental observations of one of the parallel configuration substantiates the FEM results. Moreover, the FEM models are more accountable for the variation in neck position and also provide better visualization of acoustic absorption with frequency.\n</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40857-021-00231-8","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-021-00231-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Helmholtz resonator is considered and widely accepted as a basic acoustic model in engineering applications and research. In this paper, the normal incidence sound absorption characteristics of series and parallel configurations of Helmholtz resonators is studied analytically, numerically and experimentally. The proposed analytical model for series configuration of HRs comprises of Johnson–Champoux–Allard model and transfer matrix method while parallel configuration of HRs is described using parallel transfer matrix method. The results from proposed analytical models fit well with the finite element method (FEM) results obtained from COMSOL multiphysics. Incorporation of parallel configuration and proper tuning of geometric parameters helps to overcome the trade-off between broad band sound absorption and minimum space utilization. Also, the experimental observations of one of the parallel configuration substantiates the FEM results. Moreover, the FEM models are more accountable for the variation in neck position and also provide better visualization of acoustic absorption with frequency.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.