{"title":"\\(AI^{2}\\): the next leap toward native language-based and explainable machine learning framework","authors":"Jean-Sébastien Dessureault, Daniel Massicotte","doi":"10.1007/s10515-023-00399-5","DOIUrl":null,"url":null,"abstract":"<div><p>The machine learning frameworks flourished in the last decades, allowing artificial intelligence to get out of academic circles to be applied to enterprise domains. This field has significantly advanced, but there is still some meaningful improvement to reach the subsequent expectations. The proposed framework, named AI<span>\\(^{2}\\)</span>, uses a natural language interface that allows non-specialists to benefit from machine learning algorithms without necessarily knowing how to program with a programming language. The primary contribution of the AI<span>\\(^{2}\\)</span> framework allows a user to call the machine learning algorithms in English, making its interface usage easier. The second contribution is greenhouse gas (GHG) awareness. It has some strategies to evaluate the GHG generated by the algorithm to be called and to propose alternatives to find a solution without executing the energy-intensive algorithm. Another contribution is a preprocessing module that helps to describe and to load data properly. Using an English text-based chatbot, this module guides the user to define every dataset so that it can be described, normalized, loaded, and divided appropriately. The last contribution of this paper is about explainability. The scientific community has known that machine learning algorithms imply the famous black-box problem for decades. Traditional machine learning methods convert an input into an output without being able to justify this result. The proposed framework explains the algorithm’s process with the proper texts, graphics, and tables. The results, declined in five cases, present usage applications from the user’s English command to the explained output. Ultimately, the AI<span>\\(^{2}\\)</span> framework represents the next leap toward native language-based, human-oriented concerns about machine learning framework.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"30 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-023-00399-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The machine learning frameworks flourished in the last decades, allowing artificial intelligence to get out of academic circles to be applied to enterprise domains. This field has significantly advanced, but there is still some meaningful improvement to reach the subsequent expectations. The proposed framework, named AI\(^{2}\), uses a natural language interface that allows non-specialists to benefit from machine learning algorithms without necessarily knowing how to program with a programming language. The primary contribution of the AI\(^{2}\) framework allows a user to call the machine learning algorithms in English, making its interface usage easier. The second contribution is greenhouse gas (GHG) awareness. It has some strategies to evaluate the GHG generated by the algorithm to be called and to propose alternatives to find a solution without executing the energy-intensive algorithm. Another contribution is a preprocessing module that helps to describe and to load data properly. Using an English text-based chatbot, this module guides the user to define every dataset so that it can be described, normalized, loaded, and divided appropriately. The last contribution of this paper is about explainability. The scientific community has known that machine learning algorithms imply the famous black-box problem for decades. Traditional machine learning methods convert an input into an output without being able to justify this result. The proposed framework explains the algorithm’s process with the proper texts, graphics, and tables. The results, declined in five cases, present usage applications from the user’s English command to the explained output. Ultimately, the AI\(^{2}\) framework represents the next leap toward native language-based, human-oriented concerns about machine learning framework.
期刊介绍:
This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes.
Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.