Analysis and Suppression of End Flare in AHSS Roll-Formed Seat Rail

IF 4.8 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Automotive Innovation Pub Date : 2023-08-30 DOI:10.1007/s42154-023-00240-5
Tianxia Zou, Yang Liu, Weiqin Tang, Dayong Li
{"title":"Analysis and Suppression of End Flare in AHSS Roll-Formed Seat Rail","authors":"Tianxia Zou,&nbsp;Yang Liu,&nbsp;Weiqin Tang,&nbsp;Dayong Li","doi":"10.1007/s42154-023-00240-5","DOIUrl":null,"url":null,"abstract":"<div><p>Roll forming has been widely used to manufacture long channels with complex cross-sections. End flare, one of the typical shape errors, seriously affects the forming accuracy of roll-formed parts, especially using advanced high-strength steel. In this paper, the mechanism of end flare during the roll forming process of a high-strength automobile seat rail is analyzed. The roll forming process of an actual seat rail is designed. The finite element models of the roll forming process and cut-off springback are established to predict the deformation process and occurrence of end flare. Simulation results indicate that the uneven distribution of longitudinal and shear residual stress along the length of the part is the main reason for the end flare. Based on the simulation, two strategies are proposed to mitigate the end flare. Employing multiple bending processes in the transverse direction effectively balances the longitudinal and shear residual stress. Additionally, the longitudinal bending process can make the longitudinal residual stress in the roll-formed parts more homogenised. Finally, verification experiments are carried out, and the forming accuracy of the seat rail is significantly improved.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"6 3","pages":"404 - 413"},"PeriodicalIF":4.8000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-023-00240-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Roll forming has been widely used to manufacture long channels with complex cross-sections. End flare, one of the typical shape errors, seriously affects the forming accuracy of roll-formed parts, especially using advanced high-strength steel. In this paper, the mechanism of end flare during the roll forming process of a high-strength automobile seat rail is analyzed. The roll forming process of an actual seat rail is designed. The finite element models of the roll forming process and cut-off springback are established to predict the deformation process and occurrence of end flare. Simulation results indicate that the uneven distribution of longitudinal and shear residual stress along the length of the part is the main reason for the end flare. Based on the simulation, two strategies are proposed to mitigate the end flare. Employing multiple bending processes in the transverse direction effectively balances the longitudinal and shear residual stress. Additionally, the longitudinal bending process can make the longitudinal residual stress in the roll-formed parts more homogenised. Finally, verification experiments are carried out, and the forming accuracy of the seat rail is significantly improved.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AHSS滚型座轨末端耀斑分析与抑制
滚压成形已被广泛用于制造具有复杂横截面的长通道。端部扩口是典型的形状误差之一,严重影响了滚压成形零件的成形精度,尤其是使用先进的高强度钢。本文分析了高强度汽车座椅导轨滚压成形过程中端部张开的机理。设计了一种实际座椅导轨的滚压成形工艺。建立了滚压成形过程和切边回弹的有限元模型,预测了端部扩口的变形过程和发生情况。模拟结果表明,纵向残余应力和剪切残余应力沿零件长度的不均匀分布是导致端部扩口的主要原因。在模拟的基础上,提出了两种缓解末端火炬的策略。在横向上采用多个弯曲过程有效地平衡了纵向和剪切残余应力。此外,纵向弯曲工艺可以使滚压成型零件中的纵向残余应力更加均匀。最后进行了验证实验,显著提高了座椅导轨的成形精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automotive Innovation
Automotive Innovation Engineering-Automotive Engineering
CiteScore
8.50
自引率
4.90%
发文量
36
期刊介绍: Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.
期刊最新文献
Driver Steering Behaviour Modelling Based on Neuromuscular Dynamics and Multi-Task Time-Series Transformer Mechanically Joined Extrusion Profiles for Battery Trays Mode Switching and Consistency Control for Electric-Hydraulic Hybrid Steering System Review of Electrical and Electronic Architectures for Autonomous Vehicles: Topologies, Networking and Simulators In-Vehicle Network Injection Attacks Detection Based on Feature Selection and Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1