A novel way for vibration control of FGM fluid-conveying pipes via NiTiNOL-steel wire rope

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED Applied Mathematics and Mechanics-English Edition Pub Date : 2023-05-30 DOI:10.1007/s10483-023-3008-7
Jian Zang, Ronghuan Xiao, Yewei Zhang, Liqun Chen
{"title":"A novel way for vibration control of FGM fluid-conveying pipes via NiTiNOL-steel wire rope","authors":"Jian Zang,&nbsp;Ronghuan Xiao,&nbsp;Yewei Zhang,&nbsp;Liqun Chen","doi":"10.1007/s10483-023-3008-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a coupling model of fluid-conveying pipes made of functionally graded materials (FGMs) with NiTiNOL-steel (NiTi-ST) for vibration absorption is investigated. The vibration responses of the FGM fluid-conveying pipe with NiTi-ST are studied by the Galerkin truncation method (GTM) and harmonic balance method (HBM). The harmonic balance solutions and the numerical results are consistent. Also, the linearized stability of the structure is determined. The effects of the structure parameters on the absorption performance are also studied. The results show that the NiTi-ST is an effective means of vibration absorption. Furthermore, in studying the effect of the NiTi-ST, a closed detached response (CDR) is first observed. It is noteworthy that the CDR may dramatically change the vibration amplitude and that the parameters of the NiTi-ST may determine the emergence or disappearance of the CDR. This vibration absorption device can be extended to offer more general vibration control in engineering applications.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 6","pages":"877 - 896"},"PeriodicalIF":4.5000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-3008-7.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3008-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, a coupling model of fluid-conveying pipes made of functionally graded materials (FGMs) with NiTiNOL-steel (NiTi-ST) for vibration absorption is investigated. The vibration responses of the FGM fluid-conveying pipe with NiTi-ST are studied by the Galerkin truncation method (GTM) and harmonic balance method (HBM). The harmonic balance solutions and the numerical results are consistent. Also, the linearized stability of the structure is determined. The effects of the structure parameters on the absorption performance are also studied. The results show that the NiTi-ST is an effective means of vibration absorption. Furthermore, in studying the effect of the NiTi-ST, a closed detached response (CDR) is first observed. It is noteworthy that the CDR may dramatically change the vibration amplitude and that the parameters of the NiTi-ST may determine the emergence or disappearance of the CDR. This vibration absorption device can be extended to offer more general vibration control in engineering applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NiTiNOL钢丝绳控制FGM流体输送管道振动的新方法
在本研究中,研究了由功能梯度材料(FGM)制成的流体输送管与NiTiNOL钢(NiTi ST)的振动吸收耦合模型。采用伽辽金截断法(GTM)和谐波平衡法(HBM)研究了含NiTi ST的FGM流体输送管的振动响应。谐波平衡解和数值结果是一致的。此外,还确定了结构的线性化稳定性。还研究了结构参数对吸收性能的影响。结果表明,NiTi ST是一种有效的减振手段。此外,在研究NiTi ST的作用时,首次观察到闭合分离反应(CDR)。值得注意的是,CDR可以显著地改变振动幅度,并且NiTi ST的参数可以决定CDR的出现或消失。这种减振装置可以扩展到工程应用中提供更通用的振动控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
期刊最新文献
Fracture of films caused by uniaxial tensions: a numerical model Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model Variable stiffness tuned particle dampers for vibration control of cantilever boring bars Wrinkling in graded core/shell systems using symplectic formulation Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1