Drivers’ EEG Responses to Different Distraction Tasks

IF 4.8 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Automotive Innovation Pub Date : 2023-01-17 DOI:10.1007/s42154-022-00206-z
Guofa Li, Xiaojian Wu, Arno Eichberger, Paul Green, Cristina Olaverri-Monreal, Weiquan Yan, Yechen Qin, Yuezhi Li
{"title":"Drivers’ EEG Responses to Different Distraction Tasks","authors":"Guofa Li,&nbsp;Xiaojian Wu,&nbsp;Arno Eichberger,&nbsp;Paul Green,&nbsp;Cristina Olaverri-Monreal,&nbsp;Weiquan Yan,&nbsp;Yechen Qin,&nbsp;Yuezhi Li","doi":"10.1007/s42154-022-00206-z","DOIUrl":null,"url":null,"abstract":"<div><p>Driver distraction has been deemed a major cause of traffic accidents. However, drivers’ brain response activities to different distraction types have not been well investigated. The purpose of this study is to investigate the response of electroencephalography (EEG) activities to different distraction tasks. In the conducted simulation tests, three secondary tasks (i.e., a clock task, a 2-back task, and a navigation task) are designed to induce different types of driver distractions. Twenty-four participants are recruited for the designed tests, and differences in drivers’ brain response activities concerning distraction types are investigated. The results show that the differences in comprehensive distraction are more significant than that in single cognitive distraction. Friedman test and post hoc two-tailed Nemenyi test are conducted to further identify the differences in band activities among brain regions. The results show that the theta energy in the frontal lobe is significantly higher than that in other brain regions in distracted driving, whereas the alpha energy in the temporal lobe significantly decreases compared to other brain regions. These results provide theoretical references for the development of distraction detection systems based on EEG signals.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"6 1","pages":"20 - 31"},"PeriodicalIF":4.8000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-022-00206-z.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00206-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Driver distraction has been deemed a major cause of traffic accidents. However, drivers’ brain response activities to different distraction types have not been well investigated. The purpose of this study is to investigate the response of electroencephalography (EEG) activities to different distraction tasks. In the conducted simulation tests, three secondary tasks (i.e., a clock task, a 2-back task, and a navigation task) are designed to induce different types of driver distractions. Twenty-four participants are recruited for the designed tests, and differences in drivers’ brain response activities concerning distraction types are investigated. The results show that the differences in comprehensive distraction are more significant than that in single cognitive distraction. Friedman test and post hoc two-tailed Nemenyi test are conducted to further identify the differences in band activities among brain regions. The results show that the theta energy in the frontal lobe is significantly higher than that in other brain regions in distracted driving, whereas the alpha energy in the temporal lobe significantly decreases compared to other brain regions. These results provide theoretical references for the development of distraction detection systems based on EEG signals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
驾驶员对不同分心任务的脑电图反应
驾驶员分心被认为是交通事故的主要原因。然而,驾驶员对不同分心类型的大脑反应活动尚未得到很好的研究。本研究的目的是研究脑电图(EEG)活动对不同分心任务的反应。在进行的模拟测试中,设计了三个次要任务(即时钟任务、双背任务和导航任务),以引起不同类型的驾驶员分心。24名参与者被招募参加设计的测试,并调查了驾驶员在分心类型方面的大脑反应活动的差异。结果表明,综合分心的差异比单一认知分心的差异更显著。进行了Friedman检验和post-hoc双尾Nemenyi检验,以进一步确定大脑区域之间频带活动的差异。结果表明,在分心驾驶中,额叶的θ能量显著高于其他大脑区域,而颞叶的α能量与其他大脑区域相比显著降低。这些结果为开发基于脑电信号的分心检测系统提供了理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automotive Innovation
Automotive Innovation Engineering-Automotive Engineering
CiteScore
8.50
自引率
4.90%
发文量
36
期刊介绍: Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.
期刊最新文献
Driver Steering Behaviour Modelling Based on Neuromuscular Dynamics and Multi-Task Time-Series Transformer Mechanically Joined Extrusion Profiles for Battery Trays Mode Switching and Consistency Control for Electric-Hydraulic Hybrid Steering System Review of Electrical and Electronic Architectures for Autonomous Vehicles: Topologies, Networking and Simulators In-Vehicle Network Injection Attacks Detection Based on Feature Selection and Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1