Parametric estimation for the simple linear regression model under moving extremes ranked set sampling design

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Applied Mathematics-a Journal Of Chinese Universities Series B Pub Date : 2021-06-18 DOI:10.1007/s11766-021-3993-1
Dong-sen Yao, Wang-xue Chen, Chun-xian Long
{"title":"Parametric estimation for the simple linear regression model under moving extremes ranked set sampling design","authors":"Dong-sen Yao,&nbsp;Wang-xue Chen,&nbsp;Chun-xian Long","doi":"10.1007/s11766-021-3993-1","DOIUrl":null,"url":null,"abstract":"<div><p>Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming. Ranked set sampling (RSS) was first proposed by McIntyre [1952. A method for unbiased selective sampling, using ranked sets. Australian Journal of Agricultural Research 3, 385–390] as an effective way to estimate the pasture mean. In the current paper, a modification of ranked set sampling called moving extremes ranked set sampling (MERSS) is considered for the best linear unbiased estimators(BLUEs) for the simple linear regression model. The BLUEs for this model under MERSS are derived. The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling.</p></div>","PeriodicalId":67336,"journal":{"name":"Applied Mathematics-a Journal Of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11766-021-3993-1","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-a Journal Of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-021-3993-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming. Ranked set sampling (RSS) was first proposed by McIntyre [1952. A method for unbiased selective sampling, using ranked sets. Australian Journal of Agricultural Research 3, 385–390] as an effective way to estimate the pasture mean. In the current paper, a modification of ranked set sampling called moving extremes ranked set sampling (MERSS) is considered for the best linear unbiased estimators(BLUEs) for the simple linear regression model. The BLUEs for this model under MERSS are derived. The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动极值排序集抽样设计下简单线性回归模型的参数估计
在一些实验中,成本有效的采样设计是一个主要问题,尤其是当感兴趣的特性的测量成本高、痛苦或耗时时。排名集抽样(RSS)最早由McIntyre于1952年提出。一种使用排序集进行无偏选择性抽样的方法。《澳大利亚农业研究杂志》385-390],作为估计牧场平均值的有效方法。在本文中,对于简单线性回归模型的最佳线性无偏估计量(BLUE),考虑了一种对排序集抽样的修改,称为移动极值排序集抽样(MERSS)。推导了MERSS下该模型的BLUE。与简单随机采样下的BLUE相比,MERSS下的BLUEs对正常数据的效率明显更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
10.00%
发文量
453
审稿时长
>12 weeks
期刊最新文献
Complete moment convergence for ND random variables under the sub-linear expectations Solutions for Schrödinger-Poisson system involving nonlocal term and critical exponent Flow and heat transfer of a nanofluid through a porous medium due to stretching/shrinking sheet with suction, magnetic field and thermal radiation Zero distribution of some difference polynomials Electro-mechanical coupling properties of band gaps in an elastic/piezoelectric phononic crystal nonlocal nanobeam with periodically attached “spring-mass” resonators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1