{"title":"Convergence of the Fully Discrete Incremental Projection Scheme for Incompressible Flows","authors":"T. Gallouët, R. Herbin, J. C. Latché, D. Maltese","doi":"10.1007/s00021-023-00810-x","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper addresses the convergence of a first-order in time incremental projection scheme for the time-dependent incompressible Navier–Stokes equations to a weak solution. We prove the convergence of the approximate solutions obtained by a semi-discrete scheme and a fully discrete scheme using a staggered finite volume scheme on non uniform rectangular meshes. Some first a priori estimates on the approximate solutions yield their existence. Compactness arguments, relying on these estimates, together with some estimates on the translates of the discrete time derivatives, are then developed to obtain convergence (up to the extraction of a subsequence), when the time step tends to zero in the semi-discrete scheme and when the space and time steps tend to zero in the fully discrete scheme; the approximate solutions are thus shown to converge to a limit function which is then shown to be a weak solution to the continuous problem by passing to the limit in these schemes.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00810-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The present paper addresses the convergence of a first-order in time incremental projection scheme for the time-dependent incompressible Navier–Stokes equations to a weak solution. We prove the convergence of the approximate solutions obtained by a semi-discrete scheme and a fully discrete scheme using a staggered finite volume scheme on non uniform rectangular meshes. Some first a priori estimates on the approximate solutions yield their existence. Compactness arguments, relying on these estimates, together with some estimates on the translates of the discrete time derivatives, are then developed to obtain convergence (up to the extraction of a subsequence), when the time step tends to zero in the semi-discrete scheme and when the space and time steps tend to zero in the fully discrete scheme; the approximate solutions are thus shown to converge to a limit function which is then shown to be a weak solution to the continuous problem by passing to the limit in these schemes.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.