Analytic solution of quasicrystal microsphere considering the thermoelectric effect and surface effect in the elastic matrix

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED Applied Mathematics and Mechanics-English Edition Pub Date : 2023-07-31 DOI:10.1007/s10483-023-3018-5
Yunzhi Huang, Wenqing Zheng, Xiuhua Chen, Miaolin Feng
{"title":"Analytic solution of quasicrystal microsphere considering the thermoelectric effect and surface effect in the elastic matrix","authors":"Yunzhi Huang,&nbsp;Wenqing Zheng,&nbsp;Xiuhua Chen,&nbsp;Miaolin Feng","doi":"10.1007/s10483-023-3018-5","DOIUrl":null,"url":null,"abstract":"<div><p>The incorporation of the quasicrystalline phase into the metal matrix offers a wide range of potential applications in particle-reinforced metal-matrix composites. The analytic solution of the piezoelectric quasicrystal (QC) microsphere considering the thermoelectric effect and surface effect contained in the elastic matrix is presented in this study. The governing equations for the QC microsphere in the matrix subject to the external electric loading are derived based on the nonlocal elastic theory, electro-elastic interface theory, and eigenvalue method. A comparison between the existing results and the finite-element simulation validates the present approach. Numerical examples reveal the effects of temperature variation, nonlocal parameters, surface properties, elastic coefficients, and phason coefficients on the phonon, phason, and electric fields. The results indicate that the QC microsphere enhances the mechanical properties of the matrix. The results are useful for the design and understanding of the characterization of QCs in micro-structures.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 8","pages":"1331 - 1350"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3018-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of the quasicrystalline phase into the metal matrix offers a wide range of potential applications in particle-reinforced metal-matrix composites. The analytic solution of the piezoelectric quasicrystal (QC) microsphere considering the thermoelectric effect and surface effect contained in the elastic matrix is presented in this study. The governing equations for the QC microsphere in the matrix subject to the external electric loading are derived based on the nonlocal elastic theory, electro-elastic interface theory, and eigenvalue method. A comparison between the existing results and the finite-element simulation validates the present approach. Numerical examples reveal the effects of temperature variation, nonlocal parameters, surface properties, elastic coefficients, and phason coefficients on the phonon, phason, and electric fields. The results indicate that the QC microsphere enhances the mechanical properties of the matrix. The results are useful for the design and understanding of the characterization of QCs in micro-structures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性基体中考虑热电效应和表面效应的准晶微球的解析解
将准晶相掺入金属基体在颗粒增强金属基体复合材料中提供了广泛的潜在应用。本文给出了考虑弹性基体中热电效应和表面效应的压电准晶微球的解析解。基于非局部弹性理论、电弹性界面理论和特征值法,推导了QC微球在基体中受外部电载荷作用的控制方程。现有结果与有限元模拟结果的比较验证了本方法。数值例子揭示了温度变化、非局部参数、表面性质、弹性系数和相子系数对声子、相子和电场的影响。结果表明,QC微球增强了基体的力学性能。这些结果有助于设计和理解微结构中QCs的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
期刊最新文献
Fracture of films caused by uniaxial tensions: a numerical model Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model Variable stiffness tuned particle dampers for vibration control of cantilever boring bars Wrinkling in graded core/shell systems using symplectic formulation Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1