{"title":"Analytic solution of quasicrystal microsphere considering the thermoelectric effect and surface effect in the elastic matrix","authors":"Yunzhi Huang, Wenqing Zheng, Xiuhua Chen, Miaolin Feng","doi":"10.1007/s10483-023-3018-5","DOIUrl":null,"url":null,"abstract":"<div><p>The incorporation of the quasicrystalline phase into the metal matrix offers a wide range of potential applications in particle-reinforced metal-matrix composites. The analytic solution of the piezoelectric quasicrystal (QC) microsphere considering the thermoelectric effect and surface effect contained in the elastic matrix is presented in this study. The governing equations for the QC microsphere in the matrix subject to the external electric loading are derived based on the nonlocal elastic theory, electro-elastic interface theory, and eigenvalue method. A comparison between the existing results and the finite-element simulation validates the present approach. Numerical examples reveal the effects of temperature variation, nonlocal parameters, surface properties, elastic coefficients, and phason coefficients on the phonon, phason, and electric fields. The results indicate that the QC microsphere enhances the mechanical properties of the matrix. The results are useful for the design and understanding of the characterization of QCs in micro-structures.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 8","pages":"1331 - 1350"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3018-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The incorporation of the quasicrystalline phase into the metal matrix offers a wide range of potential applications in particle-reinforced metal-matrix composites. The analytic solution of the piezoelectric quasicrystal (QC) microsphere considering the thermoelectric effect and surface effect contained in the elastic matrix is presented in this study. The governing equations for the QC microsphere in the matrix subject to the external electric loading are derived based on the nonlocal elastic theory, electro-elastic interface theory, and eigenvalue method. A comparison between the existing results and the finite-element simulation validates the present approach. Numerical examples reveal the effects of temperature variation, nonlocal parameters, surface properties, elastic coefficients, and phason coefficients on the phonon, phason, and electric fields. The results indicate that the QC microsphere enhances the mechanical properties of the matrix. The results are useful for the design and understanding of the characterization of QCs in micro-structures.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.